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ABSTRACT 

The p i t ch  motion of a s a t e l l i t e  i n  c i r cu la r  o r b i t  can be described 

by t h e  normalized d i f f e r e n t i a l  equation 

.. 
x ( t)  + s i n  x ( t )  = u ( t )  

whenever a pr incipal  ax is  of t he  s a t e l l i t e  remains normal t o  the  o r b i t  

plane. The control l ing torque u ( t )  i s  bounded ( l u ( t ) l  < - A),  and 

x ( t )  

u ( t )  

f ixed time tf while minimizing the  f u e l  expended ( ./ I u( t ) I d t  ) . The 

condition t h a t  the  bound A 

e s sen t i a l  f o r  t h e  r e su l t s  obtained. 

is twice the  p i tch  coordinate. 

which zeros t h e  pi tch e r r o r  and e r r o r  r a t e  within a prescribed 

Our goal is  t o  f i n d  t h a t  cont ro l  

tf 

of t he  control  be grea te r  than one i s  

A time varying feedback control  l a w  u (x ( t ) ,  k ( t ) , t )  i s  derived 

by examining the  backward t i m e  pseudoextremals of Pontryagin's Maximum 

Principle  emanating from the  or ig in  and eliminating a l l  candidates 

except one f o r  each i n i t i a l  disturbance (x( to) ,G(to))  and f ixed  t i m e s  

t f .  
argument, our derived control  l a w  i s  both optimal and unique. 

With the existence of an optimal cont ro l le r  guaranteed by a separate 

The f u e l  optimal control  u ( t )  i s  a piecewise constant function 

of time which can a t t a i n  only the  values +A, 0, and -A. For f i n i t e  

times of solut ion tf, t h e  backwards t i m e  t r a j ec to r i e s  approach i s  

then just i f ied.  Singular solut ions are not optimal. 
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The most important f a c t s  encountered are 

1) For tf <, IC only one switching may occur i n  t h e  pathological 

minimum t i m e  solution. 

2 )  For tf C %/2  + arcsinh 1 

cont ro l  sequence containing both t h e  values +A and -A. 

a t  most two switchings may occur i n  any 

3 )  I n  contrast  t o  the  l i nea r  problem, the  control  sequences 

( +A,o, +A,o, . . .) o r  ( -A, 0, -A,o, . . . ) 
i n i t i a l  disturbances. 

a r e  optimal f o r  appropriate 

4) Only pseudoextremals with a vanishing Hamiltonian may a r r ive  a t  the  

or ig in  e a r l i e r  than t h e  specif ied time of solut ion 

be f u e l  optimal f o r  t h a t  specif ic  time 

tf and s t i l l  

tf. 
The solut ion i s  then applied t o  solve the  ac tua l  earth-pointing 

s a t e l l i t e  problem where one now desires  t o  zero t h e  p i t ch  r a t e  while 

driving the  p i t ch  coordinate i n  time 

2x which is  most economical of fue l .  

defined by t h e  locus of those states 

( 4 h , O )  or (4(k+l)n,0) i n  t i m e  tf with iden t i ca l  f u e l  expenditure, 

then subdivide the  state space in to  periodic segments. The p i tch  

tf t o  t h a t  i n t eg ra l  multiple of 

Time varying indifference curves, 

which may be driven t o  (x,;) 

coordinate of any state within one such segment is driven t o  t h e  same 

multiple of 2%. 

The r e su l t s  of t h i s  nonlinear analysis a r e  compared t o  the  solution 

of t he  l inear ized problem. An e f f i c i en t  suboptimal control  design i s  

proposed and i t s  performance is  evaluated. 
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IWRODUCTIOR 

The problem of designing an a t t i t u d e  control  system t o  maintain t h e  

or ien ta t ion  of a communication s a t e l l i t e  so t h a t  i ts  antenna points ear th-  

ward i s  of great p rac t i ca l  i n t e re s t .  In  order t o  evaluate the  m e r i t  of a 

proposed design, one f irst  must es tab l i sh  some ove ra l l  performance c r i -  

t e r ion  for t he  system. The se lec t ion  of which fac tors  t o  include i n  such 

a c r i t e r ion  i s  i n  i t s e l f  a d i f f i c u l t  value judgment. However, upon 

agreeing on a performance c r i te r ion ,  it would be useful  t o  determine the  

optimal cont ro l  policy and thereby t h e  optimal performance f o r  t he  system. 

The r e su l t s  of such an optimal control  study are of importance t o  the  

designer for two reasons. F i r s t l y ,  it may be possible t o  implement t h e  

optimal control  s t ra tegy  d i r ec t ly .  

ble,  the  study would indicate  how an e f f i c i en t  suboptimal control  scheme 

might be devised. Secondly, it would es tab l i sh  an optimal performance 

index by which t o  gauge the  effectiveness of a proposed design. 

If such an implementation is  unfeasi-  

The dynamical system t o  be control led consis ts  of s i x  state var i -  

ables which completely describe the  motion of t he  s a t e l l i t e ;  namely, 

t he  coordinates of the  mass center and the  Euler angles. 

i n  t i m e  of these states i s  governed by a strongly coupled system of non- 

The evolution 

l i nea r  d i f f e r e n t i a l  equations. 

control  l a w  f o r  t he  most general s a t e l l i t e  motion would involve near 

insurmountable technical  d i f f i c u l t i e s .  Instead t h i s  study i s  a thorough 

treatment of t h e  f u l l  nonlinear eqwtions for a par t icu lar  s a t e l l i t e  

motion; namely, t h e  a t t i t u d e  motions of a s a t e l l i t e  i n  c i r cu la r  o rb i t  

Finding a complete feedback f u e l  optimal 

1 



when one pr incipal  axis remains normal t o  the  o r b i t a l  plane. This 

motion i s  Lyapunov s t ab le  and an approximate solut ion f o r  more general 

motions f o r  su f f i c i en t ly  small roll and yaw er rors  and e r r o r  rates. 

The method proposed f o r  providing t h e  cont ro l  torques i s  the  use 

Such a system i s  very r e l i a b l e  i n  a f u l l  of cold gas reaction j e t s .  

t h rus t  or zero th rus t  operation. The s o  ca l l ed  minimum e f f o r t  perfor- 

mance c r i t e r ion  was chosen because it corresponds d i r ec t ly  t o  minimizing 

the  amount of gas expended i n  executing the  desired earthpointing 

maneuver. Inasmuch as only a l imited amount of f u e l  i s  avai lable  f o r  

such maneuvers once the  s a t e l l i t e  i s  i n  orb i t ,  such a performance measure 

i s  most appropriate. 

problem is  indeed of t he  bang-coast or full thrust ,  zero th rus t  type 

fur ther  supports the  proposal for cold reaction j e t  cont ro l le rs .  

The f a c t  t h a t  t h e  optimal control  policy f o r  t h i s  

Since t h e  s a t e l l i t e  may spin as w e l l  as o sc i l l a t e ,  t he  p i tch  angle 

does not remain s m a l l .  Design studies based on l i n e a r  analysis may lead 

t o  grossly erroneous conclusions. In  Chapter V t h e  r e su l t s  of t h i s  non- 

l i nea r  invest igat ion are compared t o  those obtained from an optimal 

l inear ized solut ion t o  indicate  t h e  caution t h a t  must be used i n  extending 

conclusions based on a l i n e a r  model in to  regions where such a model i s  

no longer va l id .  

Pontryagin's Maximum Principle  i s  t h e  bas i c  t o o l  employed i n  t h i s  

investigation. With t h e  d i f f e r e n t i a l  equations describing t h e  s a t e l l i t e  

dynamics a t  hand, t he  Maximum Principle  provides candidates for t h e  

optimal control  as a function of t he  ad jo in t  var iables .  A t  t h i s  point 

2 



t he  d i f f i c u l t y  posed by the  nonl inear i ty  becomes most pronounced. 

l inear ized dynamics t h e  ad jo in t  system of d i f f e r e n t i a l  equations i s  

decoupled from t h e  dynamics system. 

determine the  optimal control  a s  a function of t i m e ,  once one solves t h e  

most d i f f i c u l t  t a sk  of determining appropriate i n i t i a l  conditions for t he  

adjoint  var iables  corresponding t o  the  pa r t i cu la r  s a t e l l i t e  state t o  be 

corrected.  However, i n  t he  nonlinear problem the  coupling between t h e  

control, s t a t e ,  and adjoint  var iables  i s  complete. The optimal cont ro l  

depends on the  adjoint  var iables  which depend upon the  s t a t e  variables 

which i n  tu rn  depend upon the  control  his tory.  

For 

In  t h i s  event one may i n  pr inciple  

The goal of t h i s  study i s  t o  exhibi t  t he  f u e l  optimal control  l a w  

i n  t h e  form of' a feedback control  law. In  t h i s  form the  e f f ec t s  of 

outside disturbances occurring during the  reorientat ion maneuver are 

minimized. Actually the  feedback control  l a w  i s  time dependent as  t he  

time remaining for completing the  mission is  an e s sen t i a l  parameter. 

The rea l iza t ion  of such a t i m e  dependent bang-coast control  law depends 

upon the  determination of switching surfaces i n  the  Cartesian product 

space X X t where the  time t as well as the  s t a t e  variables X i s  

a coordinate. 

For t he  ac tua l  earthpointing s a t e l l i t e  problem the  number of summer- 

s au l t s  through which the  s a t e l l i t e  has tumbled i s  of l i t t l e  consequence. 

The solut ion for zeroing the  p i t ch  e r ro r  and e r r o r  r a t e  i s  then applied 

t o  the  real  s a t e l l i t e  problem where one now desires t o  zero the  p i tch  

e r ro r  rate while driving the p i t ch  coordinate i n  time t o  t h a t  tf 

i n t eg ra l  multiple 2Kr( which is most economical of fue l .  T ime  varying 

3 



indifference curves, defined by the locus of those s t a t e s  i n  the  plane 

(x,G) which may be driven t o  (2m,O) or (2(K+l)x,O) i n  time t 

w i t h  i den t i ca l  f u e l  expenditure, then subdivide the  s t a t e  space in to  

periodic segments. The p i t ch  coordinate o f  a l l  s t a t e s  within each 

segment a t  time t a r e  driven t o  the  same multiple 2Kx. 
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CHAPTER I 

THE SYSTEM - A system consis ts  of a plant or process t o  be control led 

and a means for providing a cont ro l  input. 

our plant is  governed by the  d i f f e r e n t i a l  equation: 

The dynamical behavior of 

.. 
x ( t )  + s i n  x ( t )  = u (1-1) 

where do t s  denote d i f f e ren t i a t ion  with respect t o  t i m e  t and u i s  

the  cont ro l  input. Let 

Then the  state variables x ( t )  and x,(t) a r e  the  solutions of t h e  

d i f f e r e n t i a l  equations 

1 

S2(t)  = u ( t )  - s i n  x,(t)  

The sca l a r  cont ro l  function u ( t )  shall s a t i s f y  t h e  conditions: 

i) u ( t )  i s  a piecewise continuous function of t i m e  ( 1-41 

( 1-5 1 
ii) u ( t )  i s  bounded; t h a t  i s  l u ( t ) l  < - A f o r  a l l  t€(-=,+oo)  

where A i s  a f ixed  number grea te r  than one. 

THE CONTROL PROBLEM - For t he  plant described by equations (1-3), w e  

seek a cont ro l  u ( t )  sa t i s fy ing  (1-4) and (1-5) which transfers the  
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system from some known i n i t i a l  s t a t e  (x,(to),x2(to)) t o  the  terminal 

state (xl( t f ) ,x2(tf ) )  = ( 0 , O )  within a specif ied t i m e  T = t -t 

Since equations (1-3) are stationary,  i .e. invariant  under change of 

time reference, 

f o  

may be chosen t o  be  zero. Therefore t h e  boundary 

conditions may be wri t ten as 

D E F I N I T I O N  1-1 Any control  u ( t )  s a t i s fy ing  conditions (1-5), (1-6), 

and (1-7) s h a l l  be designated an admissible control .  In  other  words 

any piecewise continuous function of t i m e  whose absolute value i s  

bounded by a given number 

scribed i n i t i a l  s t a t e  

a prescribed time T 

conditions. 

A, 

(x10,x20) 

which drives t h e  system from some pre- 

t o  t h e  or ig in  of  s t a t e  space within 

i s  an admissible cont ro l  for t he  given boundary 

THE OPTIMAL CONTROL PROBLEM 

optimize the  system performance i n  a par t icu lar  sense while meeting 

the  objectives of t he  cont ro l  problem; namely, minimize a performance 

index while t ransfer ing  t h e  phase point 

within a prescribed time. For t h e  present case, t he  c r i t e r ion  t o  be 

used i n  evaluating system performance is  

One frequently desires t h a t  t h e  cont ro l  

(x,( t ) ,x , ( t ) )  t o  t h e  or ig in  
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t h e  so ca l l ed  minimum e f f o r t  c r i t e r ion .  

state xo( t )  sa t i s fy ing  

W e  may introduce an auxi l ia ry  

with i n i t i a l  condition 

expended along a t ra jec tory .  

minimize the  f i n a l  value of t h i s  auxi l ia ry  s ta te  var iable  

problem as  posed i s  of p rac t i ca l  i n t e re s t  f o r  it describes the  p i tch  

motion of a s a t e l l i t e  i n  a c i r c u l a r  o r b i t  when one pr inc ipa l  axis of 

t he  s a t e l l i t e  i s  p a r a l l e l  t o  t h e  normal of t he  o r b i t a l  plane. I n  t h a t  

case the  p i tch  motion, as shown i n  Appendix A, i s  described by the  

d i f f e r e n t i a l  equation 

x (0)  = 0 t o  measure the  e f f o r t  or f u e l  
0 

The optimal cont ro l  problem then is t o  

xo(T) The 

13? -3f12K I cos 8 s i n  8 = M 3 3  

with the  symbols t o  be defined below. The pr inc ipa l  moments of i n e r t i a  

of t he  s a t e l l i t e  about i t s  mass center a r e  denoted by 11,12 and 13. 

The vectors g ,g ,g along t h e  pr incipal  axes define a reference 1 2 3  
frame B f ixed  i n  t h e  s a t e l l i t e  a t  i t s  mass center.  Reference frame A 

is defined by t h e  orthogonal s e t  of un i t  vectors 
- -  - 
a1,a2, and a where 3 

- 
a1 

a2 

is  along the  l i n e  of centers  (yaw axis). 

i s  along the  tangent t o  the  o r b i t a l  plane (roll axis). 

is  t h e  normal t o  t h e  o r b i t a l  plane (p i t ch  ax i s ) .  

- 
- 
a3 

K = -  

3 3 I 

M = control l ing torque about t he  p i tch  axis. 
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R = angular veloci ty  of reference frame A with respect t o  a non- 
rotat ing i n e r t i a l  reference f r a m e  R a t  t he  ea r th ' s  center.  

- - 
0 = angle between a1 and blj the  p i tch  coordinate. 

These quantit ies a re  i l l u s t r a t e d  i n  Figure 1-1 for t he  par t icu lar  

motion under consideration; namely, 

of variables x = 20 equation (1-9) becomes 

- 
Introducing the  change - - - 

b3 - a3. 

.. 2 M x - 3 R  K s i n x =  - 
3 213 

(1-10) 

The prac t ica l  consideration of a s tab le  s a t e l l i t e  configuration i n  t h e  

absence of the control l ing torque M d ic ta tes  t h a t  K should be 

negative. The geometric properties of t he  i n e r t i a l  e l l i p so id  fu r the r  
3 

r e s t r i c t  K t o  t he  closed in te rva l  [ -1,lI. Thus 3 

(1-11) 

- 
Introducing a nondimensional var iable  

be rewritten: 

z = ,/ -3K R t  equation (1-10) may 3 

= u  d X ( T  M 
2 2 + s i n  x(.> = 

d T  2 6 1 3 ~ 3 ~  

5 where - now corresponds t o  radians of o r b i t  traversed by t h e  J q  
s a t e l l i t e .  The r igh t  hand s ide of equation (1-12) i s  t h e  control  

variable u of our or ig ina l ly  posed problem and i s  bounded by A as 

before. The bound A i s  greater  than one t o  guarantee complete con- 

t r o l l a b i l i t y  of the s a t e l l i t e .  In those s a t e l l i t e s  where the  control l ing 

torque M i s  generated by j e t s  whose thrus t  i s  proportional t o  r a t e  of 

8 



Q1 

Fig. 1-1. S a t e l l i t e  Orbi ta l  and Att i tude Reference Frames. 

Fig. 1-2- 0-System of Trajector ies .  
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f u e l  consumption, minimizing the 

J =iT 
performance c r i t e r i o n  

”‘ d t  

613Kfz 

corresponds t o  using the least possible 

maneuver of zeroing the e r ro r  and e r r o r  

f u e l  t o  perform the desired 

rate. Inasmuch as the s a t e l l i t e  

is  t o  be earth pointing whenever passing over ce r t a in  sections of the 

globe, e r ro r s  and e r ro r  rates should never accumulate t o  t he  point t h a t  

they could not be zeroed i n  half a satel l i te  o r b i t .  We shal l  com- 

p le te ly  solve t h i s  problem where T the  prescribed nondimensional 

t i m e  f o r  zeroing the  e r r o r  r a t e  i s  a t  most 

o r b i t  

allowable; % = -1, J3/6 o r b i t s  allowable.) 

R 

(e.g., 3 = -0.03, 5 o rb i t s  allowable; 

or fi/,/T radians of 

4 = -l/3, 0.5 o r b i t s  

In  the  r e a l  problem of 

reorienting a sa te l l i t e  so that  it i s  again earth-pointing, it i s  of 

l i t t l e  consequence how many summersaults the satel l i te  has passed through 

i n  r ight ing i t se l f .  

8 t o  zero and the e r r o r  8 t o  ~ K R  ( K  i s  any posi t ive or negative 

O u r  objective therefore  i s  t o  force the e r r o r  r a t e  

integer)  within a prescribed t i m e  

But i n  the reduced equation - d2x + s i n  x = u, the dependent var iable  

x i s  twice the e r r o r  6 ;  consequently, our a i m  is  t o  zero t h e  error 

rate 2 while t ransfer ing  x(7)  t o  one of the values ~ K R .  By f i rs t  

solving the case where w e  require the e r ro r  and thus 

T while minimizing the f u e l  spent. 

2 
dT 

x ( 7 )  t o  be 

brought t o  the posi t ion zero w i t h  zero e r r o r  rate,  w e  w i l l  then eas i ly  

construct the solut ion t o  the ac tua l  ea r th  pointing s a t e l l i t e  problem 

where the  number of complete revolutions about the p i tch  ax is  i s  

immaterial. 
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- Introducing an auxi l ia ry  state 

problem may be res ta ted  as 

x ( T )  while dr iving (x,(t),x,(t)) t o  (x,(t),x ( t ) )  = ( 0 , O ) .  The 

Hamiltonian f o r  t h e  augmented system i s  given by 
0 2 

where t h e  adjoint  var iables  p,(t) and p ( t)  satisfy the  following 2 

d i f f e r e n t i a l  equations: 

(1-14) 

which y i e ld  

and p t h e  adjoint  var iab le  corresponding 

s t a t e  var iab le  i s  a non-positive constant. 

equations (1-15), we obtain 

0 
t o  t h e  augmented c r i t e r i o n  

Eliminating p ( t )  from 1 

whose solut ion w e  are going t o  invest igate .  

THE NKESSARY CONDITIONS ON THE OPTIMAL CONTROL - The Maximum Principle  

of Pontryagin w i l l  now be used t o  derive t h e  necessary conditions on 
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t he  optimal control.  

problem reads as  follows: 

Theorem 6 of Ref. [l] f o r  our minimum e f f o r t  

TKEOREM 1-1 L e t  u ( t ) ,  t ~ [ O , t ] ,  be  an admissible cont ro l  which 

t ransfers  t h e  s ta te  point 

(x,(t),x,(t)) 

so t h a t  x (0 )  = (x10,x20 ) and x(T) = ( 0 , O )  where t i m e  T is fixed. 

) t o  ( 0 , O )  and l e t  x ( t )  = ( xlo x20 

be t h e  corresponding t ra jec tory ,  according t o  (1-3), 

In  order t h a t  u ( t )  

problem with f ixed  time it i s  necessary t h a t  there  exists a nonzero 

y i e l d  a solut ion of t h e  given optimal cont ro l  

continuous vector  function p ( t )  = (po( t ) ,p , ( t ) ,p2( t ) )  corresponding 

t o  u ( t )  and x ( t )  such that :  

i) For a l l  t, tc[O,T], t h e  function 

H ( p ( t ) , x ( t ) , u ( t ) )  of t he  var iable  u, 

lul 5 A, a t t a i n s  i t s  maximum M at t h e  

point u = u(t):  

ii) The function po ( t )  is nonpositive which need 

only be ve r i f i ed  a t  any point of t he  i n t e r v a l  

[OJtl  s ince po i s  constant. 

Po I 0 

Applying Theorem 1-1 t o  our  Hamiltonian 

(1-18) 

12 



r e l a t ion  (1-17) yields 

(1-20) 

Inasmuch as  u*(t)  

maximizes H(p,x,u)/lpol (where lp,l # 0), and because the adjoint  

var iable  p,(t) satisfies a homogeneous d i f f e r e n t i a l  equation (1-16), 

we may without loss of general i ty  consider t o  be e i ther  minus one 

o r  zero. In  the  case where po = -1 we obtain the cont ro l  law 

maximizes our Hamiltonian (1-19) if  and only i f  it 

po 

whereas the  pathological case of po = 0 yields  

+A if P 2 ( t )  > 0 

-A if P 2 ( t )  .c 0 

u*(t) = 

(1-21) 

(1-22) 

It should be noted t h a t  i n  the  pathological case t h e  Hamiltonian is  

maximized by a cont ro l  u*(t) without regard f o r  the performance 

c r i t e r ion .  

system t h a t  our admissible set of controls  yields only one value f o r  

This arises when so many constraints  a re  imposed on the  

u 



our performance funct ional  J ( u ) .  In  our minimum e f f o r t  problem, 

specifying a t i m e  of mission T 

i n i t i a l  state (xl(0),x2(O)) gives rise t o  the pathological case. 

That equations (1-22) are t h e  re la t ions  f o r  the minimum t i m e  solut ion 

is readi ly  apparent. 

equal t o  the minimum s e t t l i n g  of t h a t  

SINGULAR CONTROLS - We now invest igate  the  poss ib i l i t y  t ha t  p2( t )  1 

over a f i n i t e  t i m e  i n t e rva l  [tl,t2]. Should such behavior occur then 

Pontryagin's Maximum Principle,  i n  pa r t i cu la r  re la t ion  (1-17) is of l imited 

assis tance i n  characterizing candidates u( t )  f o r  the optimal cont ro l  

u*(t) over these in te rva ls .  Such controls are usually termed s ingular  

controls .  

For the  problem at  hand 

P 2 ( t >  = 1 

over the  in t e rva l  (tl,t2) if and only if 

over t h i s  i n t e rva l  i n  which case p1 0 .  Butt 

(1-23) 

(1-24) 

implies tha t  cos x,(t) 0 over (tl,t2) which can only occur i f  

2 ( t )  = x ( t )  = 0 over (tl,t2) or from (1-3) and (1-25): 1 2 

u ( t )  = s i n  x,(t) = +1 o r  -1 (1-26) 

c 
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This cont ro l  strategy corresponds t o  holding t h e  phase point a t  

(x , ( t ) ,x2( t ) )  = ((2K+1)$,0), 

integer,  during t h i s  t i m e  in terval  and then proceeding t o  zero t h e  

e r r o r  and e r ro r  rate. Since the  system i s  autonomous, nothing i s  gained 

where K is some posi t ive o r  negative 

by waiting a t  a point i n  state space f o r  a more favorable t i m e  t o  zero 

a disturbance. I n  addi t ion t h e  expenditure of fuel t o  hold such a 

posi t ion precludes our admitting such controls t o  candidacy f o r  an 

optimal control .  One notes t h a t  t he  requirement t h a t  t he  adjoint  

E 1 over a f i n i t e  t i m e  i n t e rva l  i s  incompatible with t h e  condition 
p2 
t h a t  t he  Hamiltonian H be non-negative f o r  on such an in t e rva l  

We conclude t h a t  w e  may r e s t r i c t  our 

u*(t) 

has no s ingular  controls is shown i n  

time problem, R e f .  [ 2 ] .  

as given i n  equation ( 1-21). 

TRAJECTORIES - From condition (1-17) 

cont ro l  can a t t a i n  only t h e  constant 

t he  t r a j e c t o r i e s  of t h e  system (1-3) 

considerations t o  candidates 

That t h e  pathological case also 

Almuzara's solut ion of t h e  minimum 

w e  have seen that t h e  optimal 

values A, 0,  -A. L e t  us f ind  

subject t o  these controls.  By 

assuming u t o  be constant, w e  can in tegra te  equations (1-3) t o  

obtain 

2 
2 

2 - cos x 1 + u x l + K  ( 1-27 1 
X 
- -  

with K being a constant of integrat ion.  Equation (1-27) can a l so  be 



wri t ten  

2 
2s 1 Is 1 Is x 3 2  - x /2  = cos x - cos x + u ( x  -x ) 

where (xls,x2s ) is  a point on the  t r a j ec to ry .  

, D E F I N I T I O N  1-2: If u = +A, the solut ion curves 

2 
2 
2 

X - = +Axl + COS x1 + K 

cover the  e n t i r e  plane exact ly  once s ince  A > 1. 

j ec to r i e s  w i l l  be ca l l ed  the  P-system, i ts  curves 

portions of i t s  curves P-arcs. See Figure 1-3. 

Likewise, if u = -A the  solut ion curves of 

2 
2 X 

- = - A x  + C O S X  + K  2 1 1 

(1-28) 

of (1-27) given by 

Th i s  system of t r a -  

P- curves, and 

(1-27) a r e  

( 1-30) 

and the  family of curves w i l l  be ca l l ed  the N-system, i t s  curves 

N-curves, and portions of i t s  curves N-arcs. 

Similarly the family of coast  t r a j e c t o r i e s  where 

2 
2 

- = C O S X  + K  2 1 

u = 0 given by 

(1-31) 
X 

w i l l  be ca l l ed  the  0-system, i t s  curves 0-curves, and portions of i t s  

curves 0-arcs. See Fig. 2. One notes t h a t  there  i s  a d i rec t ion  

associated w i t h  each t r a j e c t o r y  p lo t ted  i n  

direct ion i n  which the phase point 

Since t r a j e c t o r i e s  i n  the  upper half  plane 

x 1,x2 space, namely, the  

(x,,x2) moves w i t h  increasing time. 

(x2 > 0) have a d i rec t ion  
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which indicates  motion t o  the  r igh t  of t he  phase point while just t h e  

opposite holds i n  the  lower half plane. 

D E F I N I T I O N  1-3: That portion of t he  P(N) curve which passes through 

the  or ig in  of t h e  x1,x2 plane and has an associated direct ion toward 

t h e  o r ig in  w i l l  be ca l led  the  zero t r a j e c t o r i e s  and designated by 

(r-)  as i n  Fig.1-k Since the  only 0-curve passing through the  or ig in  

i s  the  o r ig in  i tself ,  any nont r iv ia l  t r a j ec to ry  t o  t h e  or ig in  meeting 

the  necessary conditions for optimality of t h e  Maximum Principle  has as  

i t s  f i n a l  a rc  a portion of t he  zero t ra jec tory .  

+ 
I' 

D E F I N I T I O N  1-4 PSEUDOEXTREMAL: Any t r a j ec to ry  (x,( t ) , x , ( t ) )  i n  t he  

state space generated by a cont ro l  which meets a l l  t h e  require- 

ments of t he  Pontryagia Maximum Principle  w i l l  be designated a pseudo- 

extremal. The work pseudoextremal ra ther  than extremal i s  used because 

as  ye t  such t r a j e c t o r i e s  a re  only candidates for optimal paths as they 

f u l f i l l  only t h e  necessary conditions f o r  optimality given by the  

Pontryagin Theorem. We do not as ye t  know that such solutions provide 

even a loca l  minimum of t h e  performance funct ional  f o r  neighboring 

t r a j ec to r i e s ;  such solutions may not provide an extremum value. 

Moreover, a solut ion providing a loca l  minimum may not provide a global 

minimum because our system is not l inear .  

To f ind  the  f u e l  optimal path, w e  may l i m i t  our considerations t o  

u*(t) 

pseudoextremals. 

extremals d i r e c t l y  t o  locate  the  optimal path, we instead compare t h e i r  

Rather than compare the  fuel  consumption of pseudo- 
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times of solut ion.  Then using Hamilton-Jacobi theory; namely, Corollary 

3-1, we w i l l  deduce the fuel optimal path from the  solut ion t i m e  com- 

parisons. 

To begin w e  develop two elementary lemmas exhibi t ing pseudoextremal 

properties.  Although t h e  lemmas concern properties w e l l  known i n  t h e  

l i t e r a tu re ,  w e  include them f o r  completeness and because t h e i r  ve r i f i ca -  

t i o n  is immediate f o r  our problem. 

LEMMA. 1-1 Along a pseudoextremal t h e  Hamiltonian H(p(t) ,x( t ) ,u)  = 

M(p( t ) ,x ( t ) )  is  constant. 

PIiOOF Along those a rcs  for which the  control  u remains constant 

i n  value the  time ra te  of change of t he  Hamiltonian i s  

But t h e  adjoint  equations s a t i s f y  

- 
p =  - V H  

X 

- -  
and from t h e  def in i t ion  of H = (p,x) 

- 
x = V H  

P 

Taking in to  account re la t ions  (1-33) and (1-34) w e  obtain 

. .  dH * *  

d t  
- -  - 6,:) - (:,E) = 0 

( 1-33 ) 

( 1-34) 

(1-35 

or H remains constant along those a rc s  where t h e  cont ro l  u remains 

constant. 
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We now consider t he  change i n  t h e  Hamiltonian across a switching point 

along a pseudoextremal. Le t  ts be t h e  t i m e  of switching. Then t h e  

change AH is given by 

where 

x( t , )  = l i m  x ( t )  
t +ts  

S 
t < t  

and 

+ 
S 

x ( t  ) = l i m  x ( t )  
t +ts  
t > ts 

From Pontryagin's Theorem we know p l ( t )  and p ( t )  t o  be continuous. 

The s t a t e  var iables  a re  a l so  continuous s ince they are governed by 

d i f f e r e n t i a l  equations with bounded control  inputs.  

have 

2 

Therefore w e  

and 
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( 1-38 1 

From re la t ions  (1-21), the f a c t  tha t  p2( t )  is  continuous, and t h a t  

the  absolute value of p 2 ( t )  

te[O,T], t h e  only possible switchings a r e  from 0 t o  f A or - f A 

t o  

may switch d i r e c t l y  from +A t o  -A or -A t o  +A. Consideration of 

each sequence i n  tu rn  reveals that 

can equal one only a t  i so l a t ed  points 

0 except i n  t h e  pathological minimum t i m e  case where t h e  cont ro l  

across a switching on a pseudoextremal a s  asser ted.  

LEMNA 1-2 Along any speudoextremal passing through the  point 

(x1,x2) = ( 0 , O )  the  Hamiltonian H is a nonnegative constant.  

- PROOF That H is  constant along a pseudoextremal i s  the  r e su l t  

of t he  previous lemma. Evaluating the  Hamiltonian H a t  t he  o r ig in  

of s t a t e  space we see 

(1-40) 

which together with r e l a t ion  (1-21) y ie lds  

H(0,O) = 0 (1-41) 

if absolute value of 

value of p2 a t  or ig in  is  grea te r  than one then 

p2 a t  o r ig in  is less than one. If the  absolute 

H(0,O) > 0 (1-42) 
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Pontryagin has proven H t o  be a non-negative constant f o r  generalized 

boundary conditions of autonomous systems, R e f .  [l] . 
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CHflPTER I1 

BACKWARDS TIME FOFMULATION 

Since our aim i s  t o  drive the  phase point (x  ( t ) , x2 ( t ) )  t o  t h e  1 
par t icu lar  end s t a t e  ( 0 , O )  within a prescribed time, it w i l l  be 

advantageous t o  reverse t h e  sense of t i m e  so tha t  t he  s t a t e  (0,O) 

becomes the  i n i t i a l  s t a t e .  and adjoint  

equation (1-16) a r e  reversible  over the  in t e rva l  (tl,t2) provided the  

solution curves possess no conjugate points on (t  ,t ). Assuming such 

i s  the  case one can rewrite t h e  state 

Both our system equation (1-1) 

1 2  
(x1,x2) t r a j e c t o r i e s  and t h e i r  

corresponding adjoint  solutions (p1,p2) a s  functions of t he  backward 

time var iable  a .  To dis t inguish between forward and backward time 

solutions l e t  

d Letting ' denote d i f fe ren t ia t ion  with respect t o  z ( '  = - = - - da d t  

the  augmented system equations become 
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with i n i t i a l  conditions: 

The backward t i m e  Hamiltonian 

i s  j u s t  t he  negative of the  forward t i m e  Hamiltonian. Consequently, 

maximizing the  forward Hamiltonian a t  each point (x,p,u) with respect 

t o  t h e  cont ro l  var iable  u i s  equivalent t o  minimizing the  backward 

time Hamiltonian %. For t h e  non pathological case where ho may be 

taken t o  be -1, t he  cont ro l  l a w  generating pseudoextremals is 

- -  

A f o r  h2(z) > 1 

o f o r  l~,(z)l < 1 (2-5) 

-A f o r  h 2 ( z )  < -1 

Again h ( 7 )  satisfies the  l i n e a r  d i f f e r e n t i a l  equation with t i m e  

varying coef f ic ien ts  

2 

h p )  + x 2 (z)cos y 1 ( z )  = 0 (2-6) 

as 
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B0UNRA.m O F  THE T - CONTROLLABLE ECGION 

DEFINITION 2-1: A point (x1,x2) i s  T - control lable  i f  there  ex i s t s  

an admissible cont ro l  u which drives the  i n i t i a l  s t a t e  (X1'X2) t o  

(0,O) within t h e  prescribed t i m e  T .  The locus of a l l  such points w i l l  

be ca l led  t h e  T - control lable  region. See Fig. 2-1. 

D E F I N I T I O N  2-2: A T-minimum time isochrone i s  the  locus of a l l  i n i t i a l  

s t a t e s  

control  can t r ans fe r  t he  s t a t e  t o  (0,O) is exactly T.  

(x,,x2) ' f o r  which the  minimum time i n  which any admissible 

Almuzara ( R e f .  [ 2 ] )  has shown t h a t  t he  minimum time solut ion f o r  

zeroing any i n i t i a l  disturbance can always be achieved i n  a t  most two 

switchings. For those i n i t i a l  s t a t e s  where the  minimum t i m e  i s  a t  most 

n, 

Before deriving t h i s  f ac t ,  we s t a t e  a comparison theorem, R e f .  [ 3 ]  of 

which we make good use. 

t h e  minimum time solut ion i s  achieved with only one switching. 

THEOREM 2-1 - Suppose c p ( t )  i s  a r e a l  solut ion on (t0,tf> of 

and q ( t )  i s  a real solut ion on (tO,tf> of 
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where g,(t)  and g2 ( t )  are continuous on (to,tf). Let g2( t )  > g,(t) 

on (to,tf). If tl and t a r e  successive zeros of c p ( t )  on 

(to,tf> then $(t) must vanish a t  some point of (t  ,t ).  
2 

1 2  
We remark t h a t  t h e  comparison theorem remains va l id  for 

g2( t )  >, g,(t) on (to,tf) s o  long as s t r i c t  equa l i ty  holds only a t  

i so la ted  points on the  in t e rva l  

t he  following d i f f e r e n t i a l  equations 

(to,t ).  We now apply theorem 2-1 t o  
f 

.. 4- cos X l ( t ) P 2  = 0 (2-10) p2 

N .. N 

P 2 + 1 P 2 = o  (2-11) 

t o  obtain t h e  r e s u l t  t h a t  a non-zero solut ion of equation (2-10) can 

have a t  most one zero i n  any in t e rva l  of t i m e  less than I[ uni t s  long. 

Identifying cos x,(t)  with g,(t) and the  constant 1 with +(t), 

i n  order f o r  a nonzero solut ion of (2-10) t o  have zeros a t  tl and t2, 
N 

it i s  necessary tha t  any solut ion p2 of (2-11) have a zero within t h e  

in te rva l  (tl,t2). But t h e  zeros of any solut ion t o  (2-11) a r e  

separated by fl. Therefore should t h e  i n t e r v a l  (tl,t2) be less than 

fi 

having no zero on t h a t  i n t e rva l  and thereby contradict  t h e  comparison 

theorem. Thus w e  have proved the  following: 

un i t s  i n  length, one could always construct a solut ion t o  (2-11) 

THEOREM 2-2 - The zeros of t he  ad jo in t  var iable  

2-10 are separated by a t  l e a s t  a un i t s  i n  t i m e .  

p ( t )  solving equation 2 

COROLLARY 2-1 - Any i n i t i a l  state on a T-minimum t i m e  isochrone where 

T i s  l e s s  than r[ can be zeroedwith one switching. 
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PROOF: Almuzara, R e f .  [2] has shown t h a t  a switching of a minimum 

t i m e  control  can only occur a t  t he  zeros of t he  function 

Application of theorem 2-2 completes t h e  proof. 

p (t).  2 

We now give a complete character izat ion of T - minimum t i m e  

isochrone. F i r s t ly ,  t h e  T - m i n i m  time isochrone i s  t h e  boundary 

of t he  T - control lable  region. Secondly, each point (x1,x2) of t h e  

T - minimum isochrone with T < TI can be generated by in tegra t ing  

equations (2-2) from i n i t i a l  condition ( 0 , O )  f o r  R seconds with 

control  u(T) = +A( -A) and continuing the  integrat ion f o r  T-R seconds 

with control  u(T) = -A(A). Hence, each value of t he  parameter R 

taken from t h e  in t e rva l  (0,T) maps in to  two points (x,,x2) of the  

T - minimum time isochrone; namely, one f o r  U ( T )  i n i t i a l l y  +A and 

one f o r  U ( T )  i n i t i a l l y  -A. See Fig. 2-2 i l l u s t r a t i n g  T - minimum 

t i m e  isochrones. 

POSSIBLE SWITCHING SEQUENCES 

By l imi t ing  t h e  normalized t i m e  of mission T t o  a value less 

than TI 

of t h e  sa te l l i t e  of half an o r b i t  f o r  our chosen value of 

we already have seen t h a t  i n i t i a l  disturbances coincident with t h e  

boundary of the  

(which corresponds t o  a l i m i t  of x / , / T  radians of  o r b i t  

K = -l/3) 3 

T -control lable  region can only be  zeroed by the  

cont ro l  sequence +A, -A or else by t h e  sequence -A, A. We now 

invest igate  o ther  possible switching sequences which s a t i s f y  t h e  

Maximum Principle  while zeroing the  i n i t i a l  disturbance within t h e  

allowable t i m e  T with minimum f u e l  expenditure. For any i n i t i a l  



disturbance which i s  an i n t e r i o r  point of t he  T- control lable  region 

may always be chosen t o  be equal t o  minus one. With t h e  continuity 

of the  adjoint  p2 ( t )  

obtain from equation (1-21) t h e  f a c t  t h a t  t he  cont ro l  may switch only 

from a value 0 t o  +A or -A o r  from +A or -A t o  0. That t h e  

cont ro l  law given by (1-21) does not specify the value of t he  cont ro l  

a t  those points i n  t i m e  f o r  which 

as  we have already seen t h a t  w e  may l i m i t  our consideration t o  those 

controls u ( t )  f o r  which Ip2( t ) l  = 1 only a t  a f i n i t e  number of 

i so la ted  points.  Choosing any admissible value f o r  the  cont ro l  u ( t )  

a t  these points w i l l  leave t h e  pseudoextremal and fue l  cos t  unchanged. 

In  specifying possible switching sequences w e  rever t  t o  t he  backward 

t i m e  formulation. Inasmuch as the  s t a t e  would remain a t  the  or ig in  i f  

the  cont ro l  u = 0 were used, the  backward time switching sequence 

begins with the  cont ro l  being i n i t i a l l y  +A or -A. We s h a l l  derive 

assured by the  Maximum Principle  w e  ea s i ly  

I p 2 ( t ) /  = 1 is  of l i t t l e  consequence 

r e su l t s  only for those sequences beginning with t h e  cont ro l  a t  +A 

s ince iden t i ca l  logic yields  analogous r e s u l t s  f o r  those sequences 

beginning with -A. The optimal pseudoextremal f o r  zeroing state 

) within time T m u s t  necessar i ly  consis t  of some combination (xlo’x20 

of p, 0, and N-arcs. In  order t o  reduce the  number of possible 

cont ro l  sequences t o  be considered for generating t h i s  optimal pseudo- 

extremal, we s h a l l  always l i m i t  t he  allowed time of solution T t o  be 

a t  most n .  In  the  proofs of ce r t a in  preliminary theorems, however, 

w e  s h a l l  f i nd  it necessary t o  fu r the r  r e s t r i c t  t he  maximum permissible 

t i m e s  of solut ion T t o  be less than n/2 + arcsinh 1 ( X  0.78n). This 
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addi t ional  r e s t r i c t i o n  occurs only i n  theorems re la ted  t o  consideration 

of pseudoextremls containing an N-arc . Alghough these proofs are 

accomplished for t h i s  smaller t i m e  l i m i t  % / 2  + arcsinh 1, the  method 

of proof suggests t he  conclusions t o  be v a l i d  f o r  t i m e s  l a rge r  than 

x/2 + arcsinh 1 - perhaps even as la rge  as In order  t h a t  w e  be 

aware of exact ly  where our conclusions are guaranteed v a l i d  f o r  A and 

a -  

where j u s t  for 

as large as A whenever possible and otherwise spel lout  c l ea r ly  t h a t  

x/2 + arcsinh 1, we extend proofs t o  be v a l i d  for T 

a par t icu lar  r e s u l t  has only been proved f o r  times 

~ / 2  + arcsinh 1. 

T up to 

I n  so doing w e  obtain rigorously complete r e su l t s  f o r  

the  lower t i m e  l imi ta t ion  and rigorously near complete r e su l t s  for t he  

x time l i m i t ,  with an indication t h a t  t h e  complete picture  m y  hold 

for times as large a s  x as w e l l .  F i r s t  w e  consider a sequence of t he  

type +A,O,-A,O,... 

which can occur within our  prescribed time 

and seek a l i m i t  for t h e  number of  such switchings 

T. In  order for such a 

sequence t o  meet t he  necessary conditions f o r  optimality the  backwards 

t i m e  adjoint function h2 ( t )  must behave as shown i n  Figure 2-3 where 

7 i s  the  t i m e  of t h e  i - t h  switching. That T is  always grea te r  

than 
i 3 

x/2 + arcsinh 1 X 2.46 is  t h e  subject  of t h e  following theorem. 

THEOFtEM 2-3 - If a t  time T 

variables  are zero then f o r  any admissible cont ro l  1 1  

U ( T )  such t h a t  h2('r2) < -1 and h2(Tf) = -1 where T1 < 7 < 7 t h e  

in t e rva l  T -T exceeds x/2 + arcsinh 1. The proof i s  achieved by 

examining t h e  minimum t i m e  solut ion of an auxi l ia ry  problem having 

hl(T) and A2(T)  i n  addition t o  y , ( ~ )  and y2(.) as  s t a t e  var iables .  

h ( 7  ) > 1 and the  backward t i m e  state 1 ' 2 1 -  

( y  [T ) = Y~(T~)=O) 

2 f  

f 1  
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I- 

-- --- 

Fig. 2-3. Behavior of Adjoint X , ( T )  i n  a 
Switching Sequence +A, 0, -A, 0, . . 

Fig. 2-4. A u x i l i a r y  Problem t o  Minimize t h e  
Time i n  Going from Gi t o  G 

f .  
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The o r ig ina l  system and adjoint  equations are: 

We now l e t  z ( T )  

defined by 

denote t h e  state var iables  of our auxi l ia ry  problem i 

and sys t e m  equations 

( 2  -14) 

and consider t h e  problem of a minimum t i m e  t r ans fe r  of t he  system from 

the  i n i t i a l  region ( see  Fig. 2-5) defined by Gi 

2 = o  1 
2 = o  2 

free 23 
(2-15) 
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Fig. 2-5. I n i t i a l  Region Gi of t h e  A u x i l i a r y  Problem. 

Fig. 2-6. Target Region Gf of t h e  A u x i l i a r y  Problem. 
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t o  t h e  t a rge t  region Gf (see Fig. 2-6) defined by 

z ( T  ) free 

~ ~ ( 7 ~ )  f r e e  

z ( z ) > o  3 f -  
z ( T )  = -1. 4 f  

1 f  

( 2  -16) 

In the  auxi l ia ry  problem the  system dynamics are described by four  

f i rs t  order d i f f e r e n t i a l  equations (2-14) whereas the  o r i g i n a l  system 

dynamics had only two first order d i f f e r e n t i a l  e q u t i o n s  (2-2). Further- 

more, the  c r i t e r i o n  of t h e  auxi l ia ry  problem i s  t i m e  optimality, not 

f u e l  optimality.  We note t h a t  t he  region Gi corresponds t o  t h e  f i rs t  

par t  of t h e  hypothesis of our theorem. Region Gf i s  j u s t  t he  second 

par t  of t he  hypothesis once w e  recognize t h a t  t he  requirement 

h2(T2) < -1 can be replaced by requiring X'(7 ) t o  be > - 0 i.e., 

z (7 ) > 0. 
2 f  

See Fig. 2-7, 2-8. This replacement includes a l l  t r a j e c -  3 f -  
t o r i e s  where t h e  adjoint  dips below minus one but a l so  introduces 

addi t ional  t r a j ec to r i e s  which do not cross the  plane 

are tangent t o  it as i l l u s t r a t e d  i n  Fig. 2-8. Thus the  case z,(T,) = 0 

may introduce extraneous t r a j e c t o r i e s  which do not correspond t o  three 

h2(T) = -1 but 

switching points.  Nevertheless, should t h e  minimum t i m e  of solut ion 

exceed fi/2 + arcsinh 1 f o r  t h e  G1-Gf boundary region problem it 

would exceed fl/2 + arcsinh 1 

is more r e s t r i c t i v e  i n  t h a t  paths which do not dip below 

exc luded Let 

f o r  t h e  ac tua l  problem of i n t e r e s t  which 

z3 = -1 are  
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Fig. 2-T0 Replacement of X2(T2) < -1 by h ' ( T  ) 2 0.  
2 f  

Fig. 2-8 Extraneous Solutions Introduced V i a  Replacement 
of h2(T2) < -1 by h ; ( T f )  2 0.  
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(2-17) 
h 

H = - ~ r  z + Jr2(sin zl-u) - JI z cos z +Jr z - 1 1 2  3 4  1 4 3  

define the  new Hamiltonian for t he  auxi l ia ry  problem with backward 

t i m e  adjoint  var iables  Jli s a t i s fy ing  the  equations: 

aii 
I#’ 1 = - a Z 

= -Jr2cos z1-q3z4sin z 1 
1 

h 

(2-18) 

(2 -19)  

(2-20) 

(2-21) 

The backward time Hamiltonian is  minimized by t h e  cont ro l  law: 

(2-22) 

and by any admissible value of t h e  cont ro l  input 

set  T f o r  which Jr2(T)  = 0. For t h e  t i m e  optimal solut ion the  ad jo in t  

vector V(T ) at the  moment of time 7 = 7 where T is  the  minimum 

t i m e  of solution, must be orthogonal t o  some hyperplane B which is a 

bracket for t he  s e t  Gf as i n  R e f .  [41. Furthermore, t h e  ad jo in t  

vector a t  t i m e  T must be directed toward that side of t h e  hyperplane 

B where t h e  set Gf lies. The same t ransversa l i ty  conditions must be 

met a t  the  other  endpoint 7 = 0 f o r  some hyperplane B bracketing t h e  

set 

U ( T )  on t h e  t i m e  

f f’ f 

f 

G .  except t h a t  t h e  ad jo in t  vector  i s  now directed away f r o m t h a t  
1 
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side of the hyperplane where the  s e t  Gi l ies .  By considering a l l  

bracketing hyperplanes w e  f i nd  t h a t  t he  requirement t ha t  t he  adjoint  

vector T(0) be orthogonal t o  some hyperplane B bracketing the  s e t  

and t h a t  t h e  adjoint  point out from t h a t  side of B where the  
Gi 

region lies, lead t o  the  r e su l t s  
Gi 

The component 

z ( a . )  3 1  
*,(T) and q2(a)  a r e  unknown as these components of t h e  s t a t e  vector 

Z(T) a re  f ixed a t  t he  l e f t  boundary. That q4(zi) must be non posit ive 

can bes t  be seen be viewing the  planar i n i t i a l  manifold G from an 

end view as shown i n  Fig. 2-9. Consideration of a l l  bracketing hyper- 

( a  ) i s  zero because the  s t a t e  vector component 3 i  
is f r ee .  The i n i t i a l  conditions for t h e  adjoint  components 

- 

i 

planes i s  equivalent t o  considering a l l  8 sa t i s fy ing  

i n  which case 

Since analogous 

boundary, i .e . ,  

(2  -24) 

t ransversa l i ty  conditions must hold a t  t h e  r igh t  

a t  time a the  minimum t i m e  of solution, we again f 

consider a l l  bracketing hyperplanes B f o r  the  region Gf and require 

tha t  $(a ) be an inwardly directed normal f o r  some hyperplane B. f 
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Fig. 2-9. Bracketing Hyperplane With Normal t o  Region G . 
i 

0 

i 
Fig. 2-10. Bracketing Hyperplane With Normal T t o  Region Gf. 
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The r igh t  end conditions f o r  t he  ad jo in t  Vector T ( T )  are 

(2-26) 

q1 and $ vanish a t  t i m e  T since these components 2 f 
The components 

of the  s t a t e  vector z a r e  f r ee .  $4(~f) i s  unknown as  z ~ ( T ~ )  i s  

completely spec i f ied  t o  be minus one. That $ ( a  ) must be non-negative 

i s  readi ly  seen by examining an end view of the  planar t a rge t  manifold 

Gf must now be 

an inwardly directed normal f o r  some bracketing hyperplane. 

equations (2-20) and (2-21) we have 

- 

3 f  

as shown i n  Fig. 2-10 and reca l l ing  the  ad jo in t  T ( T  ) f 

From 

where 

*3(Ti) = 0 (2-28) 

i n  order t o  meet t h e  t ransversa l i ty  conditions. We now w i l l  demonstrate 

t h a t  i n  t he  las t  r e l a t ion  (2-23) t h e  adjoint  component $,(T~) must be 

s t r i c t l y  l e s s  than zero i n  order t h a t  our problem possess a t i m e  optimal 

solut ion.  Suppose = 0. Then s ince * 3 ( ~ i )  = o equations 

(2-20) and (2-21) y ie ld  
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q 3 ( T )  0 T > 7 i (2-30) 

For any f i n i t e  t i m e  i n t e r v a l  [ T ~ ,  T~ 1 t he  t ransversa l i ty  conditions 

J r l ( ~ f )  and Jr ( T  ) together with t h e  result Jr (T) 0 and equations 

(2-18) and (2-19) force t h a t  
2 f  3 

as w e l l .  Therefore, t he  only solut ion t o  t h e  adjoint  equations satis- 

fying the  t ransversa l i ty  re la t ions  and the  requirement t h a t  

i s  the  t r i v i a l  so lu t ion  T ( T )  E 0. However, Pontryagin’s Maximum 

Principle,  and i n  par t icu lar  theorem 2 of reference [l] guarantees t h a t  

the  adjoint  solut ion corresponding t o  the  optimal time solutions be 

nonzero. Hence, assuming the  existence of t he  time optimal solut ion 

of a t r a j ec to ry  from region 

Jr4 

$ 4 ( ~ ~ )  = 0 

t o  region G t h e  adjoint  component 
Gi 3’ 

must not be zero a t  the  i n i t i a l  time and we have t h e  r e su l t  t h a t  

Thus we a r e  guaranteed a nont r iv ia l  solut ion t o  (2-27). 

equal i ty  hold i n  the  t ransversa l i ty  r e l a t ion  (2-29) then appl icat ion 

of theorem 2-2 t o  t h i s  solut ion of equation (2-27) yields  t h e  r e su l t  

Should the  

T - T  f i -  > a  (2-35) 
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But i n  the  event t h a t  the  t ransversa l i ty  r e l a t ion  a t  t h e  r igh t  hand 

end is indeed 

If3bf) > 0 (2-36) 

w e  can no longer guarantee t h e  v a l i d i t y  of inequal i ty  (2-25). However, 

re la t ion  (2-36) implies upon examination of Fig. 2-10 t h a t  

z ( - G ) = o  3 f  (2-37) 

With the  a id  of  t h i s  addi t iona l  boundary condition on t h e  state var iable  

we now seek a lower bound on t h e  minimurn t i m e  of solution of the  less 

r e s t r i c t i v e  prob lem 

t4 = z3 (2-38) 

N 

z3 = -uz4 

meeting boundary conditions 

z ( 7  ) = -1 4 f  

d (T ) = z (z ) = o 4 f  3 f  3 

Z 4 ( T i )  2 1 

z ( T ~ )  f r e e  

where the  cont ro l  var iable  s a t i s f i e s  

(2-39) 

( 2 -40) 

(2-41) 

N 

as  we have replaced cos z ( T )  by t h e  control  function u. Since now 

w e  consider  COS z l ( t ) )  

of  t i m e  no longer r e s t r i c t e d  by the  plant dynamics formally described 

1 
N 

t o  be an a rb i t r a ry  piecewise boundary function 

through z and z2, t he  minimum t i m e  of solut ion f o r  t h i s  less 1 
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r e s t r i c t i v e  problem i s  a lower bound f o r  t h e  minimum time of solut ion 

of  our auxi l ia ry  problem of in t e re s t .  The solution t o  t h i s  problem i s  

more readi ly  seen if we revise the sense of t i m e  i .e.,  re turn t o  t h e  

forward t i m e  formulation. Then t h e  problem is t o  drive the  plant 

2,(t) = -x ( t )  (2-42) 3 

2 3 ( t )  = X 4 ( t ) Z  (2-43) 

from the posit ion x4 = -1 with zero ve loc i ty  t o  t h e  posi t ion x4 = +1. 

The optimum policy as  derived i n  Appendix B i s  t o  provide maximum 

accelerat ion a l l  t h e  way i .e . ,  maximize 

l a w :  

N .. 
yielding control  "4 = -ux4 

N 

u = -1 x4 > 0 

N 

(2-44) 

u = +l x4 0 

If tc designates the  t i m e  x4 crosses in to  the  posi t ive half  plane 

then the  solut ion i s  given by 

X 4 ( t )  = -cos( t - t i )  ti 5 t 5 tc 

x4( t )  = s inh ( t - t c )  tc <, t <, tf 

and the  t i m e  of solut ion i s  

r[ tf = - + arcsinh 1 2 (2-47) 
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which completes t h e  proof of  theorem 2-3. 

t i m e  optimal solutions a r e  i l l u s t r a t e d  i n  Figs.  2-11 and 2-12. 

The backward and forward 

A s t r a igh t  forward modification of the  proof of theorem 2-3 

yields  the  resul t :  

COROLLARY 2-2 - If a t  t i m e  

t i m e  T h (T ) < -1 then t h e  in t e rva l  Zf-Tl  is greater  than 

~ / 2  + arcsinh 1. 

T I J  h2(T1) = 1 and h ( T  ) > 0 and a t  1 1 -  

f ’ 2 f -  

See Fig. 2-13. 

From theorem 2-3 w e  conclude t h a t  a P-0-N-0 sequence of arcs  on 

a pseudoextremal could not occur i n  t i m e  

0-P-0-N sequence can not occur within t h i s  t i m e  l i m i t  a l so  i s  the  

rc/2 -t arcsinh 1. T h a t  an 

conclusion of corol lary 2-2. Therefore, t h e  only pseudoextremals we 

need consider containing an N-arc i s  the  P-0-N (or N-0-P) pseudo- 

extremal, provided t h a t  time T permitted f o r  zeroing t h e  s t a t e  i s  

l e s s  than fi/2 + arcsinh 1. 
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Fig. 2-11. Backward Time-Optimal 
t he  Reduced Auxiliary 

1 

0 - 

-1 
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Problem. 
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Fig. 2-12. Forward Time-Optimal Solution of 
t he  Reduced Auxiliary Problem. 
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CHAPTER I11 

TWECTORIES I N  BACKWARD TIME 

We begin by considering the  backward time pseudoextremals emanating 

from the  or ig in  f o r  which the  Hamiltonian €$ i s  zero. Again w e  

consider only those extremals with the  control  i n i t i a l l y  

t i c a l  reasoning yields  analogous r e su l t s  f o r  the  case -A. In  the  back- 

ward time formulation the  subscript  s denotes the  value of the  state 

and adjoint  variables a t  t h e  f i r s t  switching which occurs on the  zero 

t ra jec tory .  The two succeeding switchings which may occur within time 

fl a re  denoted by the  subscripts r and q.  For the  case where the 

Hamiltonian 

+A f o r  iden- 

the  adjoint  var iables  a t  the  f i rs t  switching have values 

= 1  x2s 

h s i n  y s i n  y 
- 2s 1s - Is - - 

y2s y2s 

The adjoint  var iable  X 2 ( T )  i n  Appendix C i s  shown t o  s a t i s f y  

1 the  following re la t ion  along an 0-arc which does not cross t h e  

axis 

y 



where the  point 

Thus along t h i s  

) is  t h e  s t a r t i n g  point of the  arc  f o r  T = T ( Y l s  jY2S S 

portion of t he  pseudoextremals under consideration 

Y2(.> x (T) = - 
y2s 2 

The second switching r occurs when 

( 3  -5 1 

f o r  t h e  smallest Tr greater  than z A switching from 0 t o  +A 

occurs i f  

S 

whereas a switching from 0 t o  -A occurs i f  

Examination of t h e  equation of an 0-curve 

y2 2 - 2cos y1 = y2s 2 - 2cos Y l s  n = 2K1 
(3-9) 

with the  constant K1 

of curves. For K1 > 1 t h e  curve defined by t h e  f irst  switching 

defined by equation (3-9) yields  two classes  

remains en t i r e ly  below t h e  y1 axis for y2 i n i t i a l l y  < 0 .  The 

second switching i s  therefore  from 0 t o  +A. Applying (3-7) and 

(3-9) we f i n d  t h a t  

(3-10) Is cos y = cos y lr 

The locus of a l l  points (ylr,y2r) sa t i s fy ing  conditions (3-7) and 
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(3-9)  i n  t h e  smallest t i m e  ‘G * 7 > 7 i s  therefore  a re f lec t ion  of r’ r 5 

an arc  of t he  zero t r a j ec to ry  about t he  l i ne  y = a.  1 
Letting C denote the  y1 coordinate of t h e  in te rsec t ion  of t h e  

K1 = 1 w e  have from zero t r a j ec to ry  and the  0-curve corresponding t o  

( 1-27 
2 

2 0 = COS c - COS 0 + A(c-0) y2c - -  

2 

2 0 = cos c - cos 31 
y2c - -  

from which 

2 
A 

c = -  (3-13) 

Should t h e  f irst  switching of an % = 0 
pseudoextremal occur f o r  

< 31 then t h e  second switching i s  from 0 t o  +A and occurs 2 
A < Y l s  

on t h e  re f lec t ion  of t h e  zero t r a j ec to ry  about t h e  l i n e  

i l l u s t r a t e d  by Fig. 3-1. 

y1 = IC as  

In  t h e  case where K < 1 the  0-curves form closed paths about 1 
2 the  or igin.  Along such paths (yls < A) condition (3-6) is  m e t  f o r  

t h e  f irst  t i m e  a t  t h e  point 

which represents a re f lec t ion  of t h e  zero t r a j ec to ry  about t he  

These points correspond t o  switching from 0 t o  -A. 

y1 axis. 

We now note t h a t  f o r  t h e  f irst  switching t o  have taken place 

h;(‘G) < - 0 
h2(‘G) 

had t o  cross the  l i n e  h (‘G) E 1 from above and hence 2 



Fig. 3-1. rx Locus Second Switching 0 t o  +A 
of an %= 0 Pseudoextremal. 

Fig. 3-2 % = 0 Pseudoextremals . 



as seen i n  Fig. 3-3 .  Condition (3-3-) leads t o  t h e  requirement t h a t  

s i n  y > 0 Is - (3-15) 

which rules out t h e  poss ib i l i t y  of any 

a f i rs t  switching y on the  i n t e r v a l  (fi,2fi). 

% = 0 
pseudoextremals having 

Is 
The complete system of % = 0 pseudoextremals f o r  y < 2fi i s  Is 

shown i n  Fig. 3-2. 

These pseudoextremals whose Hamiltonian i s  zero a re  of par t icu lar  

i n t e re s t .  If we relax the  t i m e  specif ied f o r  reaching a given s t a t e  

(y,,y2) 

t o  zero the  disturbance (x,,x,) 

may achieve no reduction i n  f u e l  cos ts .  

lying on such a pseudoextremal ( i .e . ,  relax the  specif ied t i m e  

i n  t h e  forward time formulation) we 

To demonstrate t h a t  such i s  the  case we u t i l i z e  the  following 

r e su l t  of Joseph C .  Dunn f i r s t  published i n  reference [51: 

THEOREM 3-1  For a compact set of admissible cont ro l  inputs t h e  

canonical charac te r i s t ic  d i f f e r e n t i a l  equations of Hamilton-Jacobi 

ex i s t  on a region, R, i f  and only i f  t he  pseudoextremals of t h e  Maximum 

Principle are described by a unique system of d i f f e r e n t i a l  equations. 

Furthermore, if t h i s  unique system of d i f f e r e n t i a l  equations ex is t s ,  

then it necessarily coincides with t h e  canonical cha rac t e r i s t i c  equations. 

A s  i n  t h e  c l a s s i c a l  calculus of  var ia t ions  (see R e f .  C61) w e  may 

now introduce a bes t  performance or minimum cost  function 

- 
where u(y1, y2 ) i s  the  set of a l l  admissible controls  which t r ans fe r  
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Fig. 3-3. Behavior of Adjoint A*(.) a t  F i r s t  
Backward Time Switching T . 

S 

F=-V(T)  

- 
a 

Fig. 3-4. Fuel Ekpenditure F Versus Allowed Time of  Solution Tf. 
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t he  state from ( 0 , O )  t o  (y1,y2) within t i m e  T Then i n  t h a t  

region R of t h e  Cartesian product space ylX y2X h l X  h2X 7 where t h e  

pseudoextremals of t h e  maximum principle  a r e  described by a unique 

system of d i f f e r e n t i a l  equations; namely, wherever 

have ( see  R e f .  [ T I )  t h e  following: 

f ’  

I X , ( ‘ r )  I # 1 we 

where 

and 

(3-1-9) 

as a d i r ec t  consequence of theorem 3-1. 

Therefore along t h e  €$ = 0 extremals excepting switching points 

w e  f i n d  t h a t  

and d i f f e r e n t i a l  changes i n  t h e  t i m e  constraint  do not lead  t o  any 

reduction i n  f u e l  expenditure. 

If we p lo t  t he  minimum fuel  cost  F versus the  t i m e  cbnstraint  

T f o r  a pa r t i cu la r  i n i t i a l  state (x,,x2) lying i n  the  region spanned 

by these pseudoextremals one expects t o  f ind  f l a t  portions a t  l e a s t  

loca l ly  corresponding t o  a range of 

See Fig. 3-4. 

T f o r  which equation (3-18) holds. 
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A s  we s h a l l  see i n  the  synthesis of t h e  optimal cont ro l  l a w  f o r  

where (3-20) holds f o r  our par t icu lar  i n i t i a l  state the  range of 

(x ,X ), t he  phase point a r r ives  a t  t h e  or ig in  a t  a fixed time and then 1 2  

waits there  with cont ro l  zero u n t i l  the t i m e  constraint  i s  m e t .  

7 

Since 

along any pseudoextremal through the  or ig in  

point i n  backward t i m e  

( 0 , O )  f o r  a f ixed end' 

( yl( Tf) Jy2( Tf) ) 

-av ( 71 J Y2 J T ) / a T  5 o (3-22) 

whenever t h e  der ivat ive ex i s t s .  

A s  one would expect t h e  f u e l  cost  -V(T)  versus backward time 7 

curve f o r  a f ixed  end point must be monotonically decreasing. 

forward t i m e  formulation t h e  f a c t  t h a t  no f u e l  i s  expended holding the  

phase point a t  t h e  f i n a l  s t a t e  ( 0 , O )  

versus time curves must be monotonic. 

I n  t h e  

means t h a t  such minimum f u e l  cost 

We a r e  now i n  posi t ion t o  assert the  following corollary: 

COROLLAKY 3-1 Any pseudoextremal possessing a non-zero Hamiltonian 

which zeros t h e  state ( x ~ ~ ~ x ~ ~ )  i n  t i m e  tf where tf i s  s t r i c t l y  

l e s s  than t h e  prescribed t i m e  of mission i s  not f u e l  optimal for 

t h e  prescribed t i m e  Tf .  

Tf 

Thus t h e  phenomenon of waiting at  t h e  or ig in  i . e .  meeting the 

t i m e  constraint  "too early" i s  f u e l  optimal only for pseudoextremals 

along which t h e  Hamiltonian vanishes. 
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Corollary 3-1 i s  a d i r ec t  consequence of t he  theorem due t o  Dunn. 

Suppose such a pseudoextremal were optimal. Then by relaxing t h e  exact 

t i m e  of zeroing t h e  state (x10,x20) from t t o  Tf, Dunn's theorem 

predicts  a reduction i n  f u e l  consumption; lee . ,  another path would 
f 

consume l e s s  f u e l  f o r  t h e  m a x i m u m  t i m e  of mission 

d ie t ing  the  optimality of such a pseudoextremal. 

Tf thereby contra- 

Up t o  now w e  have not worried about t h e  f a c t  that f o r  those points 

l A 2 ( T ) l  = 1 (i.e.,  a t  switching points) re la t ions  (3-17), .t where 

(3-18), and (3-19) a re  not defined inasmuch a s  the  canonical d i f f e ren t i a l  

equations of Hamilton-Jacobi do not exist unless t h e  pseudoextremals of 

t he  Maximum Principle  are defined by a unique system of d i f f e ren t i a l  

equations. B u t  we have already seen t h a t  singular controls  are not 

optimal. The system of d i f f e r e n t i a l  equations of t h e  Maximum Principle  

i s  unique except for t he  i so l a t ed  points on t h e  time ax is  where 

/ A 2 ( . t ) l  = 1. 

whether or not we a r e  a t  a switching point a t  the  moment of  considera- 

t i on .  If a t  such a point .ts we can always w a i t  an a r b i t r a r i l y  small 

t i m e  u n t i l  t i m e  7 -6.t a t  which t i m e  re la t ions  (3-17), (3-18), and 

(3-19) are defined. From t h i s  new point .t -6.t w e  i n s i s t  t h a t  f o r  

t he  time remaining, t h e  path must be f u e l  optimal f o r  t i m e  .t -67 i f  

t he  o r ig ina l  path were fuel  optimal f o r  a t i m e  .t . This i s  merely a 

restatement of Bellman; Pr inciple  of Optimality. From t h i s  new point 

we may reapply the  arguments of Corollary 3-1 t o  substant ia te  our claim 

tha t  Corollary 3-1 i s  v a l i d  even when (3-17), (3-18)) and (3-19) are 

not definable. 

With t h e  a i d  of t h i s  f ac t ,  Corollary 3-1 remains v a l i d  

S 

S 

S 

S 
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Whenever w e  l i m i t  t h e  t i m e  of mission such t h a t  

z < a  f -  (3 -23) 

then there  i s  a unique 

(y,,y2) reachable within t i m e  'c by such extremals. Otherwise, for 

l a rger  T two types of mul t ip l ic i ty  can occur. I n  Fig. 3-5, t h e  s t a t e  

( Y p  Y2 ) 

sequence A, 0, -A, 0, A, 0 which i s  an % = 0 pseudoextremal. 

Another candidate i s  path OGH generated by t h e  cont ro l  sequence A, 0. 

The other  type i s  t h e  path OD'E generated by t h e  sequence -A, 0. Both 

5 = 0 pseudoextremal passing through any state 

f 

f 

can be reached by t h e  path OBCDEFH generated by t h e  control  

mu l t ip l i c i t i e s  a re  eliminated 

-two switchings can occur. It 

requires l e s s  f u e l  than OGH 

by l imit ing t h e  t i m e  'c so t h a t  at  most f 

should be c l e a r  t h a t  t h e  path OBCDEFH 

and therefore  one % = 0 pseudoextremal 

may not be t h e  optimal path once the  time constraint  i s  relaxed. 

Almuzara R e f .  [ 2 ]  has shown the  zero t r a j e c t o r i e s  r+,r- t o  be time 

optimal and thus OG could only be fuel  optimal i n  the  pathological 

case. Clearly path OBCDEFG uses less fue l .  

Having previously demonstrated tha t  t he  second switching of P-0-N 

type % = 0 

I'+ we now w i l l  show: 

pseudoextremals occurs on t h e  re f lec ted  zero t r a j ec to ry  

Y 1  

LEMMA. 3-la 

extrema1 with nonvanishing Hamiltonian occurs below t h e  curve 

The second switching ( 0 - N  corner) of any P-0-N pseudo- 

I" - 
PROOF: Along t h a t  portion of an 0-arc below the  y1 axis the  

Y 1  

adjoint  X 2 ( ~ )  satisfies 
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Fig. 3-5. Nonuniqueness of 5 = 0 Pseudoextremals 
Through a State (yl, y2). 

Fig 3 -6 Second Switchings of P-0-Po Pseudoextremals . 
In a P-O-P-.. the second switching R lies 
below the curve 5 .  
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whereas on t h a t  portion of  an 0-arc above the  y 

s a t i s f i e s  

axis, A,(.) 1 

where y denotes t h e  y1 coordinate of t h e  path a t  t h e  crossing 

of t he  y1 axis .  The derivation of (3-25) i s  given i n  Appendix D. 
lm 

A 

L e t  h ( T )  denote t h e  adjoint  corresponding t o  an % = 0 pseudo- 2 

extrema1 and h2(T) 

% # 0 pseudoextremal which coincides with the  5 = 0 pseudoextremal 

up t o  t h e  second switch point.  Then on an 0-arc below t h e  y1 axis 

t h e  value of t he  adjoint  along t h a t  portion of an 

and on an 0-arc above t h e  y ax i s  1 
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1 ] d C +  3 2 
1 + 

[2sin y l m l m  ( y  [ ~ s i n  y lmylm ( -y Is 11" 

-1 
2 3/2 [ 2 ( c o s  a-cos Yls)+.Y2sl 

(3-27) 
1 

That h ('G)-c2(T) 

i s  ye t  t o  be determined from equation (3-27). 

point M ( Y ~ , Y ~ ~ ) ,  where the  pseudoextremal crosses the  y axis, 

t h e  quantity h2(Z)-c2(T) remains negative. Suppose t h a t  h2( ' ~ ) - h ~ (  a )  

where not negative above t h e  y axis. Then from t h e  continuity of 

both h2(a) and ?2(T)  there  must be some 'G f o r  which 

i s  infac t  l e s s  than zero above the  y axis as well, 
2 1 

From (3 -26)  up t o  t h e  

1 
A 

1 

C 

o r  from (3-27) 

+ 1 ] d o  = 
[2sin y,(ylm- )l3I2 
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1 1 I 

3/21 
+ 

Y,(Y,- ) I  
(3-29) 

Considering the  l e f t  hand side of equation (3-29) t o  be a function of 

Y l s  say G(yls) where yIm i s  now fixed, equation (3-29) becomes 

simply 

But G(yl) f o r  y1 # ylm i s  a monotonic function of y inasmuch as 1 

and hence equation (3-29) can only hold i f  

This means the  f i rs t  time L2(a)  could again equal &(T) i s  when the  

phase point reaches r+ i n  which case a switching would occur on 
Y? 
I I" . 

Y, 
On t h e  o ther  hand should (3-32) not be val id ,  then (3-28) a l s o  

L 

does not hold i n  which case 

h 2 ( T )  - Z 2 ( T )  < 0 (3 -33 ) 

remains v a l i d  on t h a t  portion of an 0-arc above t h e  

continues t o  hold past t h e  t i m e  o f  crossing the  curve 

y1 axis and 

. I n  
Y 1  
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e i t h e r  case (3-26) or (3-33) 

along t h a t  portion where t h e  two pseudoextremal s t a t e  t r a j e c t o r i e s  

coincide. Since on r+ 
Y 1  

A x ('6) = -1 (3 -35 1 2 

by continuity of h2('G) a switching from 0 t o  -A must have occurred 

on or below r+ . 
Y 1  

In  l i k e  manner w e  seek t h e  resul t :  

j334MA 3-lb. 

extrema1 must occur below t h e  curve 

about t h e  l i n e  y1 = fi. (See Fig.  3-6). 

The second switching (0-P corner) of any P-0-P pseudo- 
+ rfi t h e  re f lec ted  zero t r a j ec to ry  

PROOF: From (3-24) w e  have a t  t h e  second switching 

1 da  
2 ]3/2 -[2(cos u-cos Yls)+Y2s 

or since 5 5 0  

(3-37) 

Since both y and y are negative 2r 2s  

(3 -36) 

B u t  
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y2 -y2 = 2(cos Ylr-C0S Yls) 
2 r  2s  

and theref  ore  

o r  f o r  

< n  x > r c  O < l r  

(3-39) 

+ 
and the  second switching i s  indeed below rn. See Fig. 3-6.  

DEFINITION 3-1: A T-Bang-Coast Isochrone i s  the  locus of a l l  i n i t i a l  

s t a t e s  (x,,x,) which can be zeroed i n  exactly time T by the  control  

sequence 0, +A. See Fig. 3-7.  

Whereas any point on a T-bang-coast isochrone may be reached from 

t ra jec tory ,  such a path is  not t h e  or ig in  by a P-0 type backward time 

necessarily t h e  f u e l  optimal path f o r  t h a t  par t icu lar  time T. When 

these paths a r e  f u e l  optimal i s  t h e  topic  of t he  following theorem. 

THEOREM 3-2: If T <, rc then the  fue l  optimal path f o r  zeroing any 

s t a t e  lying on the  T-bang-coast isochrone within T un i t s  of t i m e  

i s  a P-0 t r a j ec to ry .  

Thus once the  state point (x,(t),x,(t)) and the  time-to-go T 

have values such t h a t  the state point l i e s  upon t h e  T-bang-coast 

isochrone, the  s t a t e  point merely 'I rides" the  T-bang-coast isochrone 

t o  t h e  or ig in .  



c 

- 3  

- 4  

a 

-n 

-2  7 

-37 

Fig. 3-70 Behavior of T-Bang-Coast Isochrones as T Changes. 
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The proof of theorem 5-2 proceeds by d i r ec t  elimination of other  

candidate p s eudoext r e m  Is 
- 

Candidate 1 i s  a P-0-N t r a j ec to ry  with f irst  switch point (yls,y2s 1 
such tha t  yls < C . See Figs. 3-8 and 3-1. 

We desire t o  show t h a t  path 0, S2,  Q2 (P-0 type t r a j ec to ry  

generating the  T-bang-coast isochrone) uses l e s s  f u e l  than t h e  O,S1, R1 

Q2 

t h i s  P-0-N t r a j ec to ry  uses l e s s  t i m e  than t h e  P-0 t ra jec tory .  

path consis t ing of a P-0-N type t ra jec tory .  F i r s t  w e  note t h a t  

By the  

def in i t ion  of T-bang-coast isochrone the  P-0 t r a j e c t o r i e s  

and 0,S2,Q2 both require time T. 

0, S1, R1, Ql 

Denoting t h e  t i m e  required t o  t raverse  a par t icu lar  arc  path by 

T ( * )  we have 

T h i s  r e su l t  follows from the  f a c t  t h a t  

and theref  ore 

Since 

(3-42) 

(3-43) 

(3-44) 

(3 -45 1 
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i -e . ,  t he  path R1,&2,Q1 l i es  en t i r e ly  above the  path R1,Q1 and 

re la t ion  (3-42) i s  val id .  From (3-42) it follows 

(3-47) 

Furthermore since any T-bang-coast isochrone f o r  T < l i es  below the  

curve I?+ , t h e  P-0-N t r a j ec to ry  0-S -R -Q could only r e su l t  from a 

pseudoextremal possessing a nonzero Hamiltonian as required by lemma 

1 1 2  Y 1  

3-1. Taking in to  account t h a t  

and applying Corollary 3-1 eliminates such a P-0-N extrema1 from consi- 

deration a s  a f u e l  optimal path. 

Candidate 2 i s  a P-0-N t r a j ec to ry  with f i rs t  switch point (yls,y2s 1 
such tha t  yls C .  See Fig. 3-9. 

Clearly the  P-0 path (O,S1,Q) uses less f u e l  than 

f o r  t h e  l a t t e r  expends addi t iona l  f u e l  along (O,S,R,Q) 

a r c ,  R-Q. 

the  P-0-N path 

a rc  S1-S and 

Candidate 3 i s  any t r a j ec to ry  consis t ing of P a rc s  a l te rna t ing  

with 0 a rc s  (P-0-P-O-P-...) as i n  Fig. 3-10. 

By def in i t ion  of T-bang-coast isochrone the  a rc  0, S1,P requires 

T un i t s  of t i m e .  Furthermore, 

(3-49) 
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Fig. 3-8. Candidate 1 P-0-N Type Trajectory (0,S1,R,Q2). 

y2 

Fig. 3-90 Candidate 2 P-0-P Type Trajectory (O,S,R,Q). 
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Fig. 3-10. Candidate 3 P-0-P-0.. Type Trajectory (O,S,R,Q,P). 

Fig. 3-11. Candidate 4 P-0-P-0-N Type Trajectory (O,S,R,Q,M,L) 
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v i a  t h e  argument of  (3-43). Such t r a j e c t o r i e s  are eliminated due t o  

t h e i r  f a i l u r e  t o  meet t h e  t i m e  constraint .  

Candidate 4 i s  the  P-0-P-0-N t r a j ec to ry  shown i n  Fig. 3-11. 

A P-0-P-0-N t r a j ec to ry  can always be found such t h a t  

If furthermore 

then t h i s  P-0-P-0-N t r a j ec to ry  would use l e s s  f u e l  than t h e  P-0 

t r a j ec to ry  O , S ' , L .  In  order for such a P-0-P-0-N t r a j ec to ry  t o  be 

o p t i m a l  the  adjoint  var iable  k2(T) would have t o  behave a s  shown i n  

Fig. 3-12. But employing the  conclusion or corol lary 2-3 we have 

fl 
z ( R , Q , M )  > 5 + arcsinh 1 (3-52) 

Furthermore, from lemma 3-1 t h e  second switching of such a pseudo- 

) i s  such t h a t  

If T ( 0 , x )  

or ig in  t o  t h e  l i n e  y1 = fl then ce r t a in ly  

denotes t h e  minimum t i m e  t o  dr ive t h e  s t a t e  point from t he  

7 ( 0 , S , R , Q , M )  > + arcsinh 1 + T ( 0 , f l )  

B u t  

dC 
7(0,7[) = 2 1'  CO COS U-l+AC)]l/ 
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I f  we r e s t r i c t  t he  magnitude of A -such that 

$(0,3c) > 5 - arcsinh 1 

where A s a t i s f i e s  max or equivalently A < A- 

3-c du = - - arcsinh 1 ,,” [2( cos “-l+A,C) 1‘ 2 2  

(3 -56 1 

(3-57) 

then 

and such a pseudoextremal can not occur f o r  our solut ion where 

r e s t r i c t e d  t o  be l e s s  than 3-c. 

a l l  i n  the solut ion of t he  ac tua l  ea r th  pointing s a t e l l i t e  problem f o r  

the  control  bound A 

gravi ta t iona l  torque (see eq. 1-32) as can be ve r i f i ed  by evaluating 

(3-57). The design parameter A, as indicated i n  Chapter V, should 

probably l i e  between 1.2 and 5.0 t o  achieve e f f i c i e n t  zeroing of 

disturbances without undue cont ro l  torque requirements. 

Tf i s  

Relation (3-57) i s  no r e s t r i c t i o n  a t  

could s t i l l  be about 13.6 times t h e  maximum 

All possible pseudoextremal candidates other  than the P-0 extremals 

which generate the  T-bang-coast isochrone have now been eliminated from 

being f u e l  optimal. The existence of an optimal solut ion together  with 

Pontryagin’s Maximum Pr inc ip le  completes the  argument t h a t  these 

pseudoextremals a re  indeed the  optimal t r a j e c t o r i e s  a s  asser ted  by the  

theorem 3-1. 

P-0 
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Fig. 3-12. Adjoint X2 Behavior Corresponding t o  Candidate 4. 

i’ 
I I ,I I I I I I 

Fig. 3-13. Adjoint h2 Behavior Generating a P-0-P-0-P. Pseudoextremal. 



CONTROL LAW FOR RFGION BO’TJNDED BY TLBANG-COAST ISOCHRONE AND T-MINIMUM 

TIME ISOCHRONE 

In  the  analysis  of theorem 3-2 one f a c t  should have become c l ea r .  

In  order f o r  any state beyond t h e  T-bang-coast isochrone t o  reach t h e  

or ig in  within t i m e  T i t s  path must necessar i ly  contain an N-arc. Now 

t h e  reason f o r  our preoccupation i n  Chapter I1 with l imi t ing  the  f ixed  

times of mission Tf t o  be less than 5 + arcsinh 1 becomes c lear .  

Such s t a t e s  must have as pseudoextremals a P-0-N t ra jec tory .  A 

rt 

P-O-P-O-N*-* or P-O-N-O*.* type can not occur within t h e  time l i m i t  

- + arcsinh 1 v i a  corol lary 2-2. 2 

T-bang-coast isochrone a t  time-to-go T where T < - + arcsinh 1 t h e  

cont ro l  i s  u ( t )  = -A. See Fig. 3-13. 

Tt Therefore f o r  a s t a t e  outside the  

3c 

- 2  

This region of Fig. 3-14a f o r  which the  optimal control  i s  -A i s  

a time dependent region. I t s  isochrone boundaries a r e  t h e  T-minimum- 

time isochrone and t h e  T-bang-coast isochrone which a re  t i m e  varying 

curves a s  t h e i r  names suggest. Given an i n i t i a l  disturbance (x101x20) 

t o  be zeroed within t i m e  Tf lying outside the  Tf-bang-coast isochrone, 

w e  now seek t h e  t r a j ec to ry  t raced by t h e  phase point. If t denotes 

the  time t h a t  has lapsed since w e  began zeroing t h e  disturbance, then 

t h e  time remaining f o r  completing the  solut ion i.e., time-to-go T i s  

given by 

T = T - t  f (3-59) 

Referring t o  Figs.  3-l4a,b,c,d so long as t h e  s t a t e  (x,(t),x,(t)) 

belongs t o  t h e  region bounded by t h e  T-minimum-time and T-bang-coast 
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Fig. 3-14a. Opt imal  P-0-N Path for Zeroing Sta te  X within Time 
Tf (OSFK) . 
Solid portion i s  t h a t  already traversed. 

Dashed portion i s  yet t o  be traversed. 

Fig. 3-14b. S ta te  X i s  s t i l l  within t h e  time-varying 
u = -A control  region. 

73 



Fig. 3-lbc. S t a t e  X in te rcepts  t he  shrinking bang-coast 
isochrone and control  switches t o  zero. 

Fig. 3-14d. S ta t e  X ' r i d e s '  t h e  shrinking bang-coast 
isochrcne t o  I", 
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isochrones t h e  cont ro l  remains 

along an N-arc toward the  boundary of t he  u = -A region; namely, t h e  

T-bang-coast isochrone, t h i s  boundary i s  i t s e l f  shrinking toward the  

u ( t )  = -A. A s  the  phase point proceeds 

or igin.  The cont ro l  remains u ( t )  = -A u n t i l  t h e  phase point (x,,x2) 

intercepts  t he  T"-bang-coast isochrone a t  time-to-go T" < T from 

which t i m e  on the  solut ion is given by theorem 3-2, i .e . ,  the  phase 

point rides the  shrinking bang-coast isochrone t o  the  or ig in .  We 

wri te  f o r  fu ture  reference: 

OPTIMAL CONTROL L A W  3-1. Any s t a t e  (x,,x,) residing within the  region 

bounded by the  T-minimum-time isochrone and the T-bang-coast isochrone 

a t  time-to-go T has control  u ( t )  equal minus A. 

CONTROL LAW FOR mGION BOUNDED BY T-BANG-COAST ISOCHRONE AND ZERO 

TRAJEGTORY 

Theorem 3-2 provides the  optimal cont ro l  l a w  whenever the  time-to- 

go T i s  such that t h e  s t a t e  (x , ( t ) ,x2( t ) )  belongs t o  t h e  T-bang- 

coast  isochrone. We now seek the  minimum e f f o r t  optimal t r a j e c t o r i e s  

and cont ro l  l a w  f o r  those i n i t i a l  disturbances 

ing t o  t h e  region bounded by the  Tf-bang-coast isochrone and the  zero 

t r a j ec to ry  where Tf 

disturbance. 

(x,( to),x,( to)) belong- 

i s  the  maximum time allowed f o r  zeroing the  

By l imit ing t h e  allowable t i m e  Tf t o  be a t  most 51 un i t s  it i s  

su f f i c i en t  t o  consider only t r a j e c t o r i e s  consis t ing of a l te rna t ing  P 

and 0-arcs.  That t h i s  i s  the  case can be seen by merely reconstructing 

the  arguments of t h e  proof of theorem 3-1. 
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Before delving in to  t h e  precise  s t ruc ture  of such P-O-P-O... 

pseudoextremals we develop some preliminary lemmas. 

LTiPlMA 3-2 Along any pseudoextremal consis t ing of a l t e rna te  P and 

0-arcs (P-O-P-O--*) t he  adjoint  var iable  i s  always posi t ive up t o  

the  l a s t  0-P or P-0 corner of t he  sequence. 

PROOF: Along a P-arc t h e  adjoint  var iable  h 2 ( T )  i s  always 

greater  than or equal t o  one and therefore  surely posi t ive.  

0-arc h2(T) i s  given by 

Along an 

where the  subscript  s now denotes t h e  values of t he  var iable  a t  

(3-60) 

t h e  

f i r s t  switching i.e.,  P-0 corner i n  backward time. Should h2(T) 

become negative then t h e  term i n  brackets i n  equation (3-60) must be 

posi t ive a t  tha t  time. Let t ing 7 denote the  f i r s t  t i m e  h2(T) N 

vanishes w e  have 

Thereafter the  bracketted term i s  monotonically increasing and therefore  

f o r  some z > T N 
h2(Z) < -1 (3-62) 

since y2(T) along an 0-arc of  a P-0-P sequence must be negative and 

bounded away from zero. 

an N-arc. 

But then the  pseudoextsemal would consis t  of 

This contradicts  t h e  f a c t  t h a t  w e  a r e  dealing w i t h  a 



P-O-P-O*** 

must be pos i t ive  and nonzero. 

LEMMA 3-3 In  a P-0-P-0-P-0 pseudoextremal t h e  four th  switching 

(second 0-P corner) occurs t o  the  r igh t  of t h e  l i n e  

type extrema1 and thus u n t i l  t h e  f i n a l  P-0 corner h2(T) 

y1 = 3 ~ .  

PROOF: For such a pseudoextremal the associated adjoint  must 

behave a s  shown i n  Fig. 3-13. Here w e  have used lemma 3-2 guaranteeing 

X ( T )  t o  be posi t ive.  Between t h e  switching points S and R t h e  

adjoint  function X ( T )  achieves a r e l a t ive  minimum a s  it a lso  does 2 

between t h e  switching points Q and M. 

2 

A t  these  r e l a t i v e  minimum of X2(.6) two re la t ions  hql& 

ii) h';(amin) > o 

Recalling t h a t  

( 3  -65 

and expression (3-1) for t h e  backward t i m e  Hamiltonian % w e  obtain 

Furthermore, from (3-54) and (2-6) 

Now from lemma 3-2 
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and therefore  a t  these r e l a t ive  minima w e  have from (3-56) and (3-67) 

i) s in  y (T ) 5 o (3-69) 1 min 

ii) cos yl(rmin) < 0 (3-70) 

Therefore the  smallest value of 

i n t e rva l  given by 

yl(Tsmin) must l i e  i n  t h e  half  open 

(3-71) 331 
31 1. Y1(Tsmin) < 2 

A t  t h e  r e l a t ive  maximum of X 2 ( T )  t h e  condition 

X;(Tmax) < 0 

leads t o  t h e  requirement 

cos y ( 7  ) > 0 1 m a x  

Therefore t h e  smallest value of yl(Trmax) such t h a t  

yl(Tm) > yl(Tsmax) l i e s  on t h e  open in t e rva l  

331 31 
1 rmax 2 2 < y (T ) < 231 f - 

Reapplying re la t ions  (3-69) and (3-70) and the  requirement that 

Yl(Tqmin) > Y,(Trmax) 

we obtain the  r e su l t  t h a t  

(3-74) 

(3 -75 1 

31 
331 5 Y1(Tqmin) < 331 + - 2 (3-76) 
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Now since 

(3-77) 

w e  have t h e  desired result 

as asserted by lemma 3-3. 

Thus whenever t h e  T-controllable region l i e s  en t i r e ly  between the  

l ines  x1 = -3fi and x1 = +3fi we may l i m i t  our consideration of 

P-O-P-O... sequences t o  those candidates -having a t  most th ree  switchings. 

We now embark upon a method t o  order these P-0-P-0 type pseudo- 

extremals s o  t h a t  we may derive t h e  switching curves. Consider t he  zero 

t r a j ec to ry  r+ and a p a r a l l e l  P-curve t o  t h e  r igh t  of I?+ as shown i n  

Fig. 3-15. + 
The f i rs t  switch point (P-0 corner) on I' i s  denoted by t h e  

point S whereas t h e  second switch point (0-P corner) lying on t h e  given 

fixed P-curve i s  denoted by t h e  point R. A t h i r d  switching (P-0 corner) 

should it occur w i l l  also l i e  on the  given P-curve and be labeled 

point Q. 

The f i rs t  switch point S i s  allowed t o  vary or move down along 
+ 

t h e  zero t r a j ec to ry  I' . W e  seek t h e  e f f ec t  of such var ia t ion  upon 

the  posi t ion of t h e  t h i r d  switch point Q which i s  constrained t o  

remain on t h e  given P-curve. The result w e  a r e  seeking, as given i n  

the  next theorem and i l l u s t r a t e d  i n  Fig. 3-15, i s  t h a t  a s  S moves 

down t o  S ' ,  Q moves up t o  Q'. Furthermore, i f  t h e  points S and 

R character ize  an ac tua l  pseudoextremal, then t h e  function mapping 

t h e  points S i n to  t h e  points Q i s  piecewise continuous. If i n  
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\ \ fP-CURVE 

\ Q-?- 

Fig. 3-15. Switching Points S,R,Q of t h e  P-0-P-0 
Trajector ies  of  Theorem 3 - 3 .  

Fig. 5-16. Sandwiching o f  P-0-P-0 Type Tra jec tor ies  about t h e  Degene- 
r a t e  Trajectory a t  S 
Coincide. c r  c r  c r  

i n  which t h e  Points R and Q 



addi t ion Q remains i n  the  region under consideration; namely, 

(3-79) 

t h e  mapping i s  continuous. 

Restated i n  the  form of a theorem w e  have: 
+ 

THEOREM 3-3 If point S on I' and point R on a f ixed  P-curve are 

f i rs t  and second switch points of some P-0-P-0. pseudoextremal, then 

t h e  mapping M1 of t h e  y1 coordinates of t h e  points  S onto t h e  y 

coordinates of t h e  points  Q i s  a monotonically decreasing function. 

1 

This theorem means t h a t  t h e  P-0-P-0 pseudoextremals are sandwiched" 

between t h e  second and t h i r d  switch points.  The point Q approaches 

the  point R u n t i l  t h e  second and t h i r d  switch points coincide. See 

Fig. 3-16. The behavior of t h e  ad jo in t  var iab le  h2 corresponds t o  

t h e  coincidence of points R and Q i s  shown i n  Fig. 3-19 where t h e  

curve i s  tangent t o  t h e  switching l i n e  h2(7)  1. 

To f a c i l i t a t e  t h e  proof of theorem 3-3 we w i l l  need t h e  preliminary 

r e s u l t  of lemma 3-4. 

LEMMA. 3-4 If point S on .I? and point R on a fixed P-curve are 
+ 

f i r s t  and second switch points of some P-0-P pseudoextremal, then t h e  

mapping % i s  a monotonically decreasing function. 

We s h a l l  re turn  t o  t h e  proof of t h i s  lemma but  f i rs t  l e t  us complete 

the  proof of theorem 3-3. 

PROOF OF THM)FEM 3-3 Given y and y as the  y coordinates of 

t he  f irst  and t h i r d  switch points  of a P-0-P-0. 

Is Iq 1 

pseudoextremal and 
A 

and t h e  corresponding abscissas  of another P-0-P-0 
Y l s  lq 
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A 
Fig. 3-17'. Capped and uncapped t r a j e c t o r i e s  coincidZ&%or Ylr <, Y1 5 Ylq. 

If path OSRQ i s  a pseudoextremal, path OSRQ i s  not. 

A Fig. 3-18. Behavior of  X2 and h2 If Y l q  Were Greater Than Y . If 
X corresponds to t h e  pseudoextremal solut ion i21qdoes not. 2 
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pseudoextremal of theorem 3-3, we m u s t  show t h a t  

(3 -80) 

. For l q  2 Ylq Suppose t o  t h e  contrary $ 

both pseudoextremals coincide 

of  t he  adjoint  var iables  h2(y1) and $*(yl) corresponding t o  such 

pseudoextremals as functions of  t h e  var iable  yl* See Fig. 3-18. In 

order t h a t  $ 

values 

See Fig.  3-17. Now consider t h e  behavior 

it i s  necessary t h a t  the  adjoints  have equal l q  2 Ylq 

= I on t h e  in t e rva l  Y 1  f o r  some 

A 

< I < y  ( 3  -83 ) Y l r  - - l q  

Evaluating t h e  Hamiltonians HB and f$ a t  y1 = I and noting tha t  

y 2 ( I )  = F2(I) we f ind  

$-^q9 = - (X1(1)-21(1))Y2(1)  + (X2(I)-2*(I)) * 

* ( s i n  r - U )  + IuJ- lu l  

But 



Theref o r e  

where the l a s t  inequal i ty  follows from Fig. 3-18. Thus >_ HB which 

i s  a contradiction of lemma 3-4. The proof of theorem 3-3 i s  complete 

once we ver i fy  lemma 3-4. 

+ 
PROOF OF LEMMA 3-4: Given the  points S on r and R on a f ixed  

P-curve (See Fig. 3-17 or 3-16) t o  be f i rs t  and second switching points 

f o r  some P-0-P pseudoextremal, w e  f i rs t  m u s t  express t h e  Hamiltonian 

% i n  terms of t h e  points S and R. Next w e  must f i n d  t h e  var ia t ion  

i n  %; namely, 6% as the  points S and R move t o  S'  and R' of 

Fig. 3-15. 

From appendix C w e  have t h e  expression f o r  t h e  ad jo in t  h2(yl) 

along the  0-arc from y t o  ylr: Is 

where y ( 0 )  denotes t h e  coast t r a j ec to ry  through the  point S and 

i s  exp l i c i t l y  

2 
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Since S and R are switch points 

k2(Yls) n = xgs = 

and equation (3-87) evaluated a t  R becomes 

from which 

We now seek the  f i r s t  order var ia t ion  

Hamiltonian created by a var ia t ion  6s of t h e  first switching point 

6% of L e  bac-_ward t i m e  

+ 
S. We require t h a t  S' = S + 6s remain on I? . Thus 

or f o r  f i r s t  order var ia t ions  

= (A-sin yls)6Yls (3-94) y2s6y2s 

Also we require t h a t  t h e  second switch point 

P-curve. This means t h a t  

R remain on the  given 
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or as before the  f i rs t  order var ia t ions  s a t i s f y  

Y2r6Y2r = (A-sin Ylr)6Ylr ( 3  -96 1 

We now look for some re l a t ion  between 6ylr and 6yls. The points S 

and R a r e  on an 0-arc and thus 

2 2 

2 2 Is 
- = -  y2s + cos ylr - cos y Y2r (3 -97 1 

o r  

y2r6y2r = y2s6y2s - s in  y l r  6y l r  + s i n  yls6yls (3-98) 

and 6y from (3-98) w e  ob- ''2 r 2s Using (3-94), (3-96) t o  eliminate 

t a i n  t h e  desired relat ionship 

(3-99) - 
''1, - ''1s 

so  t ha t  t h e  given P-curve and zero t r a j ec to ry  I"' are i n  f a c t  pa ra l l e l .  

We now are i n  a posit ion t o  compute t h e  var ia t ion  

scribed by lemma 3-4. 
6% taken as pre- 

From (3-92) 
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or using (3-92) 

But 

(3-102) 

or using (3-99) 

(sin y -A) (sin yls-A)] 
- %s (3-103) 1 1 lr 

E(- - -) = [ 3 3 
Y2r '2s Y2r y2 s 

Also w e  have 

Using (3-88) we find that 
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or with t h e  a i d  of (3-94) 

(3-106) 

and (3-104) can be rewrit ten a s  

Putting these r e su l t s  together ( i - e . ,  combining (3-101), (3-103), and 

(3-107)) w e  f i n a l l y  obtain the  var ia t ion  i n  

6s 
% due t o  t h e  var ia t ion  

as prescribed by lemma 3-4. 

(-%+sin y -A) (-%+sin y -A) 
Is t l r  

3 
y2s 

8% = 

(3 -108) 

This may be rewrit ten by using (3-1) as 

Since the  in t eg ra l  of t h e  denominator i s  always negative as y2 i s  

negative, our goal i s  t o  show the  term in  brackets t o  be posi t ive 
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along P-0-P pseudoextremals. If t h i s  i s  true then 

f o r  t he  r e s t r i c t e d  var ia t ions  of lemma 3-4; namely, f o r  

To determine the  sign of t he  bracketed term of (3-109) i s  ye t  an awesome 

task .  If w e  f i rs t  note t h a t  

and using (3-1) and t h e ‘ f a c t  t h a t  w e  a r e  in tegra t ing  along an 0-arc we 

have 

Now in tegra t ing  by pa r t s  t he  l e f t  hand side of (3-112) 

By now combining (3-113) and (3-115) w e  ge t  f i n a l l y  



Now t h e  bracketed term of (3-109) may be  somewhat s implif ied t o  

where (3-117) defines t h e  term F(ylr), which i s  a function of 

2 
second switch point Now t h e  term h1,/yZr i s  always non 

negative s ince R i s  an 0-P corner. It i s  suf f ic ien t  t o  show (see 

Appendix E)  t h a t  

F(Ylr) ' 0 ( 3 -118) 

t o  guarantee t h a t  t h e  bracketed term of (3-109) be posi t ive.  

theref  ore, 

And 

which i s  what we s e t  out  t o  prove. 

proof of theorem 3-3 i s  a l so  complete. 

With lemma 3-4 now verif ied,  t he  

The purpose of t h i s  ra ther  tedious development has been t o  structure 

t h e  pseudoextremals v i a  theorem 3-3 so t h a t  w e  can construct t h e  locus 

of t h i r d  switching curves of a P-0-P-0 pseudoextremal. Finally,  w e  

then hope t o  construct t he  complete fuel-optimal time-varying feedback 

cont ro l  l a w  by exhibi t ing a l l  t h e  switching curves. 

s ight ,  we f i n d  the following corol lary of theorem 3-3 t o  be of pertinence. 

With t h i s  aim i n  



+ 
COROLMRY 3-2 If point S on I? and point R on a f ixed  P-curve 

are f i rs t  and second switch points of some P-O-P-O... pseudoextremal, 

then t h e  mapping 7 of t h e  y1 coordinates of t h e  points Q i n t o  the 

i n t e r v a l  [O,x] v i a  t h e  backward t i m e  of t h e  t h i r d  switching i s  a 

monotonically increasing function. 

The proof i s  apparent from Fig. 3-15. Theorem 3-3 has s t ructured 

t h e  pseudoextremls a s  shown by t h e  f igure.  If T(*) denotes t h e  

time required t o  zero t h e  point ( e )  along t h e  unprimed t r a j ec to ry  

0-S-R-Q and 7' ( 0 )  t h e  time along t h e  primed t ra jec tory ,  then 

as t h e  primed t r a j ec to ry  l i es  below t h e  unprimed. B u t  a l so  

T ( Q )  = ~ ( 6 1 ' )  + time from Q t o  Q' (3-121) 

and so 

as asser ted  by t h e  corol lary.  Furthermore, we note t h a t  the  mapping a 

i s  continuous. The mapping of t he  points Q i n t o  t h e  points S can 

be seen t o  be continuous i n  t h e  development of theorem 3-3. 

mapping 7 can be wri t ten as a continuous function of t h e  points S, 

R and Q; namely, 

Since t h e  

+ dU 
+ p,, 2 

do 

 COS o-l+AU)] [y  +2(cos u-cos y 1/ 2 
Y l s  2s Is 

T ( Q )  =/1"" 



and since S (and hence R a l so  v i a  (3-97)) depend continuously on 

Q, t h e  mapping 7 i s  continuous. This result holds equally w e l l  f o r  

any s e t  of t h i r d  switch points  Q and is  not res tx ic ted  t o  only those 

points Q on a f ixed  P-curve. Therefore the  locus of the t h i r d  

switching points Q f o r  a par t icu lar  time 7 of switching i s  a 

continuous curve i n  state space and a surface i n  t h e  Cartesian product 

space ylX y2X 7. 

Q 

CONSTRUCTION OF THE THIRD SWITCHING ISOCHRONE FOR P-0-P-0 TRAJECTORIES 

From Fig. 3-15 w e  note t h a t  for a pseudoextremal solut ion t h e  t h i r d  

switching Q must occur after t h e  second switching R, i.e., 

x l q  2 Xlr (3-124) 

For every P-curve of 3-16 there  i s  one point f o r  which Q = R 

x = x  l q  lr (3-125) 

corresponding t o  an adjoint  h behavior of Fig. 3-19. The locus of 2 

these points i n  state space f o r  varying P -  curves forms a boundary 

l imit ing the  region f o r  which an 0-P corner can occur. 

w e  have the  behavior of t h e  ad jo in t  h ( 7 )  at one such Q = R point.  

For a second switching t o  occur t o  t h e  r i g h t  of t h i s  point (an 0-P 

corner) t h e  adjoint  h 2 ( T )  would have t o  l i e  below h 2 ( T )  i n  which 

case as seen i n  Fig. 3-19, t he  0-P corner would not occur. Fig. 3-20 

i l lustrates t h i s  boundary beyond which an 

for our region of invest igat ion 

In  Fig. 3-19 

2 

A 

0-P corner does not occur 

-331 < - x1 - < 331. See (3-76) and Fig. 3-19 
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Fig. 3-19. Behavior of Adjoint A*(.) Generating Boundary of 0-P 
Corner Region at which Switchings R and Q Coincide. 

Fig. 3-20. 0-P Corner Region Bounded on Right by Q=R Curve. 
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F i  

0 - 

-71 

- 27; 

- 37 

2 

1-BANG-COAST ISOCHRONE 

'C 

I 3 -21. T-Th-rd-Switch Isochrone BC Par t i t ion ing  Region Within 
T-Bang-Coast Isochrone. Curve AB i s  t h e  Q=R Curve of  
Fig. 3-20. 

1 

Fig. 3-22. Limiting Behavior of Adjoint X2 Generating 
a Third Switching a t  t h e  Point C on I?. 
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f o r  ver i f ica t ion .  With T t h e  t i m e  remaining t o  reach the  or igin 

specified,  we an t i c ipa t e  t h e  r e su l t  t h a t  t h e  locus of those t h i r d  

switching points t h a t  occur exactly a t  backward time T 

switch isochrone) pa r t i t i ons  t h e  region bounded by the  T-bang-coast 

isochrone and t h e  zero t r a j ec to ry  

in te rsec t ion  of t h e  t h i r d  switching locus and the  T-bang-coast i so-  

( t h e  T-third- 

I'+. In  Fig. 3-21 point B, t h e  

chrone, l i es  on t h e  time invariant Q = R curve of Fig. 3-20 and 

corresponds t o  t h e  l imi t ing  ad jo in t  behavior of  Fig. 3-19. 

of t h e  Fig. 3-21 which i s  the  in te rsec t ion  of t h e  t h i r d  switching curve 

and the  zero t r a j ec to ry  

t r a j ec to ry  and a P t r a j ec to ry  coincident with I" up t o  the  point C .  

Point C 

I" must represent both a three  switch (P-0-P-0) 

The behavior of t he  ad jo in t  

t h i s  point C i s  given i n  Fig. 3-22. A t  long l a s t  we a r e  ready t o  

construct t h e  time-varying fuel-optimal cont ro l  l a w  f o r  our nonlinear 

system. 

X2 corresponding t o  a pseudoextremal f o r  

A s  an appl icat ion of theorem 3-3 and the  above w e  now have 

OPTIMAL CONTROL U W  3-2. Any state (x1,x2) residing within t h e  region 

bounded by the  T-bang-coast isochrone and t h e  T-third-switch isochrone 

a t  time-to-go T has control  u ( t )  equal zero. 

PROOF: By lemma 3-3 and theorem 3-2 we a r e  dealing with a P-0-P-0 

t r a j ec to ry  or a portion thereof .  

or +A f o r  a s t a t e  within t h e  region of consideration a t  time-to-go T.  

If t h e  cont ro l  i s  zero no fu r the r  consideration i s  needed. Suppose on 

t h e  contrary it were +A. Then the  pseudoextremal would have t o  be of 

The control  i s  therefore  e i the r  0 

type P-0-P. From Fig. 3-23 where path OSRQ i s  t h a t  pseudoextremal 

f o r  a point Q i n i t i a l l y  upon t h e  T-third switch isochrone, t h e  only 
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0 4 6 8 I. I I -1 

0-ARC ---- 
T- BANG-COAST ISOCHRONE 

T- THI RD-SWI TCH 
ISOCHRONE \ 

Fig. 3-25. Pseudoextremal Path (OSRQ) for Zeroing Sta te  Q Belonging 
t o  the  T-Third-Switch Isochrone a t  Time-to-go T. 
P-0-P path OS'R'X i s  not a pseudoextremal. 

The 

T- THIRD-SWITCH 
ISOCHRONE 

Fig. 3-24. Region (Shaded) of Optimal Control 
L a w  3-3 Having Control u = +A. 
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way a P-0-P extrema1 f o r  the  point x can meet t h e  t i m e  constraint  

i s  v i a  a path OS'R 'X.  But t h i s  i s  impossible i n  t h a t  it would con- 

t r a d i c t  theorem 3-3 as i l l u s t r a t e d  by Fig. 3-15. To be i n  agreement 

with theorem 3-3 path 

between R '  and Q. 

O S ' R ' X  of Fig. 3-23 would have had a P-0 corner 

We now i l l u s t r a t e  t he  t r a j e c t o r y  t raced  by the  phase point 

(x,(t),x,(t)) f o r  an i n i t i a l  disturbance (x10,x20 ) belonging t o  

the  region bounded by t h e  

coast isochrone, where Tf 

bance. With t denoting the  t i m e  t h a t  has lapsed since we began zeroing 

Tf-third-switch isochrone and the  T -bang- f 

i s  t h e  t i m e  allowed f o r  zeroing t h e  d is tur -  

t h e  disturbance, t h e  time-to-go T satisfies 

T = T - t  (3 -126) f 

Referring t o  Fig. 3-25, a s  long a s  t h e  s t a t e  

t h e  region bounded by t h e  T-third switch and T-bang-coast isochrones 

(x,(t) ,x,(t))  belongs t o  

t h e  cont ro l  remains u ( t )  = 0. A s  t h e  phase point proceeds along an 

0-arc toward t h e  boundary of t h i s  region, t h e  boundaries themselves 

a re  shrinking toward t h e  or igin.  The control  remains u ( t )  = 0 u n t i l  

t h e  phase point (x,,x2) in te rcepts  t h e  T '  -third-switch isochrone a t  

which t i m e  t he  control  switches t o  The phase point con- 

t inues along t h i s  P-arc u n t i l  co l l id ing  with t h e  shrinking bang-coast 

u ( t ' )  = +A. 

isochrone a t  time-to-go T"'. A t  T"' t he  cont ro l  switches again t o  

zero and t h e  phase point ' r i des '  t he  shrinking T-bang-coast isochrone 

t o  t h e  or ig in  by following an 0-arc t o  r+ and then the  P-curve t o  

the  or ig in .  Note the u = 0 region of Fig. 3-6 disappears when t h e  
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4 \ I \ r T f - M I N I M U M - T I M E  ISOCHRONE 

I \- 

1 Tf-THIRD-SWITCH I S O C H d  

Fig. 3-25a. Optimal  P-0-P-0 Paths for Zeroing Sta te  X Within Time 
T 
tge  s o l i d  a rc  i s  that alreacy traversed. 

The dashed portion i s  yet  t o  be t raversed while 

c 

Fig. 3-25b. S t a t e  X in te rcepts  boundary of u = 0 cont ro l  region; namely, 
T' - third-switch isochrone a t  time-to-to T' and cont ro l  
switches t o  +A. 



Fig. 3-25c. S t a t e  X continues along P-curve u n t i l  co l l id ing  with 
shrinking bang-coast isochrone. 

Fig. 

T"' 

Q 

3-25d. S t a t e  X meets shrinking bang-coast isochrone a t  
time-to-go T"' and cont ro l  switches t o  zero. 
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time-to-go becomes so  short  t h a t  t h e  T-controllable region l ies  between 

x1 = 4 3 ~ / 2 .  

T-third-switch l ine ,  T-bang-coast isochrone, re f lec ted  zero t r a j ec to ry  

rZ, 

W e  now are ready t o  a t t ack  t h e  region bounded by t h e  

+ 
and zero t r a j ec to ry  r+. See Fig. 3-24. 

OPTIMAL CONTROL LAW 3-3. 

by T-third- switc h isochrone, T -bang-coast isochrone, 

time-to-go T has optimal cont ro l  u ( t )  = +A. 

Any state residing within the  region bounded 

and I'+ a t  + 
rX, 

PROOF: We need only show t h a t  

f o r  t h i s  region a t  time-to-go T. Suppose u ( t )  were zero f o r  some 

state X res iding i n  t h i s  region at  time-to-go T. Then t h e  state 

would have e i t h e r  a P-0 or P-0-P-0 pseudoextremal as i t s  optimal 

path f o r  being zeroed within t i m e  T .  But a P-0 t r a j ec to ry  a r r ives  

too ear ly  by def in i t ion  of T-bang-coast isochrone. 

Furthermore, it i s  not an 

corol lary 3-1 cannot be optimal. Likewise a P-0-P-0 pseudoextremal 

OSRQX 

See Fig. 3-27. 

% = 0 pseudoextremal (see Fig.  3-2) and by 

a s  shown i n  Fig. 3-27 would a r r i v e  ea r ly  and cannot be optimal. 

To demonstrate t h a t  t h i s  i s  t h e  case requires addi t ional  e f f o r t .  To 

begin we a s s e r t  analogous t o  corol lary 3-2 t h e  following: 

COROLIARY 3-30 If the  set of points Q along some portion of an 0-arc 

represent t h i r d  switching points for some P-0-P-0 pseudoextremal, 

then the mapping a of t he  x1 coordinates of t h e  points  Q i n to  t h e  

r ea l s  v ia  t h e  backward time of t h e  t h i r d  switching i s  a monotonically 

increasing function. 
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Thus along each such 0-arc w e  may associate  a unique time of t h i r d  

switching. 

t h a t  as t h e  time-to-go T decreases t h e  t h i r d  switching point 

continuously up a given P-curve as seen i n  (3-122) and (3-123). 

See Fig. 3-26. Corollary 3-3 i s  ve r i f i ed  by first noting 

Q moves 

Because 

each such P-curve in t e r sec t s  t h e  sa id  0-arc i n  exactly one point, only 

one value of t h e  time of t h i r d  switching i s  associated with any point 

Q of t h e  P-arc - i.e., t he  mapping 7 is  a function. To demonstrate 

t h a t  t h e  function a ( * )  i s  monotonic consider t h e  points X of Fig. 

3-27 belonging t o  t h a t  portion of an 0-curve bounded by t h e  T-third- 

switch and T-bang-coast isochrones which a r e  t o  be zeroed i n  exactly 

t i m e  T. From cont ro l  l a w  3-2 each such X has a t h i r d  switching Q 

somewhere on t h i s  arc.  Now X1 switches a t  Ql and X2 a t  Q2. 

Assuming w e  must meet t h e  t i m e  constraint  

on an €$ = 0 pseudoextremal) then the  mapping of t h e  points X of 

that portion of t h e  0-arc between X1 and X2 i n t o  t h a t  portion between 

Q2 and Q v i a  t h e  t h i r d  switching point Q i s  one t o  one and onto. 

For i f  t h i s  were not t rue ,  d i s t i n c t  states X and % on an 0-arc 

would both have t h e  same t h i r d  switching point Q along pseudoextremals 

requiring exact ly  time Tf t o  reach the  or igin.  But s ince X spends 

l e s s  time than % i n  reaching point Q two di f fe ren t  t h i r d  switching 

times must be associated with a s ingle  point - contradicting t h e  

f a c t  t h a t  such a mapping a ( * )  i s  a function. 

Tf exactly ( i .e . ,  we are not 

1 

a 

a 

a 

T ( Q )  

With t h e  a i d  of Fig. 3-27 and t h e  f a c t  t h a t  t h e  mapping of t h e  

points X i n to  t h e  points Q i s  monotonic and continuous w e  complete 

t h e  ve r i f i ca t ion  of corol lary 3-3. Letting 7(Xi,Qi) denote t h e  time 

10 1 



Fig. 3 

Fig.  3-27. I l l u s t r a t i o n  2 of Corollary 5-3.  The mapping of the  x1x2 
of an 0-arc i n t o  t h e  Q Q portion via t h e  t h i r d  switch 
point of a pseudoextremd 2 i s  one t o  one and onto. 
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spent as state Xi moves t o  i t s  t h i r d  switch point Q and T ( Q . )  

denote the  time of t he  t h i r d  switching we have for each 

i 1 

Xi 

t o  coast  t o  switch point Q 
i B u t  t h e  t i m e  T(Xi,Qi) for state Xi 

along a pseudoextremal i s  a monotonic decreasing function of t h e  

abscissa of t h e  point 

and Q along t h e  0-arc a s  a function of t h e  abscissa of t h e  point Q 

Qi 
because t h e  distance between t h e  points X 

i s  monotonic as seen i n  Fig. 3-27. Therefore .(ai) i s  monotonically 

increasing a s  asser ted .  

Using corol lary 3-3 w e  can now eliminate any P-0-P-0 pseudoextremal 

from consideration and thereby complete t h e  proof of optimal control  

Q3 law 3-3. From Fig.  3-27 any P-0-P-0 pseudoextremal switching a t  

with s t a r t i n g  point X < X1, must a r r ive  too ear ly .  Furthermore, it 

can not be an 

3-4 guarantee t h a t  t he  t h i r d  switching point of such a pseudoextremal 

% = 0 pseudoextremal because theorem 3-3 and lemma 

must be below t h a t  t h i r d  switch point of any t h i r d  switching locus 

belonging t o  t h e  same given P-curve. Such a t r a j ec to ry  can not be 

optimal and therefore  optimal control  l a w  3-3 i s  established. 

We now i l l u s t r a t e  t h e  P-0-P t r a j ec to ry  t raced  by t h e  phase point 

(x,(t),x,(t)) f o r  an i n i t i a l  disturbance (x10,x20 ) belonging t o  t h e  

region bounded by the  T -third-switch and Tf-bang-coast isochrones and 

t h e  f ixed  curves 

i n i t i a l  disturbance (x10,x20) i s  T f s  Referring t o  Fig. 3-28a,b, 

f 

and rfl. + + 
The t i m e  specif ied for zeroing t h e  

e,d a8 long as t h e  state 

bounded by t h e  T-third-switch and T-bang-coast isochrones and t h e  

(x,(t>,x,(t)) belongs t o  t h e  region 
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Tr- BANG-COAST ISOCHRONE 

Fig. 3-28a. Optimal P-0-P Trajector ies .  Path 0,s ,Rl,Xa zeros 
state Xa ear ly  but nonetheless optimahy. The dashed 
portion i s  yet t o  be  t raversed while t h e  s o l i d  arc  i s  
t h a t  already traversed. 

+ Fig* 3-28’0. S t a t e  Xa reaches curve r, ahead of t h e  shrinking 
bang-coast isochrone and control  switches t o  zero. 
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Fig. 3-28c. S t a t e  xb co l l ides  with t h e  shrinking bang-coast 
and control  switches isochrone before meeting 

t o  zero. 

Fig. 3-28da S ta t e  
ing bang-coast isochrone t o  a r r i v e  a t  time Tr. 

Xa a r r ives  ea r ly  a t  origin; s t a t e  xb r ides  shrink- 



+ 
curves and rfl ( T  i s  t h e  time-to-go) t h e  cont ro l  remains 

u ( t )  = +A. 

of t h i s  region u n t i l  e i t h e r  meeting t h e  fixed l i n e  

with t h e  shrinking T-bang-coast isochrone. 

by the  point Xa i n  Fig. 3-28 corresponds t o  an % = 0 pseudoextremal. 

The phase point 

isochrone and a r r ives  a t  t h e  or ig in  ear ly .  In  t h e  second case t h e  

i n i t i a l  disturbance was too far from the  

l i n e  before being intercepted by t h e  shrinking bang-coast isochrones 

Here % proceeds with control  u ( t )  = A u n t i l  time-to-go TI' a t  

which t i m e  t h e  control  switches t o  zero. Thereafter t h e  phase point 

' r i des '  t he  shrinking bang-coast isochrone t o  t h e  or ig in .  

The phase point proceeds along a P-arc toward t h e  boundary 
+ rfl or col l id ing  

The f i rs t  case illustrated 

is  always ahead of the  shrinking bang-coast 'a 

+ 
rfl switch l i n e  t o  reach t h a t  

We conclude our development with the  f u e l  optimal feedback cont ro l  

l a w  for t h e  remaining shaded region of Fig. 3-29a. 

OPTIMAL CONTROL LAW 3-4. 

by the  T-bang-coast isochrone, rfl and I' a t  time-to-go T has 

optimal cont ro l  u ( t )  = 0 .  

Any state residing within the  region bounded 
+ + 

PROOF: That no P-O-P*** t r a j e c t o r i e s  may occur within t h i s  region 

was deduced in,  lemma 3-lb. 

P-0-N t ra jec tory ,  i .e. ,  t he  cont ro l  being u ( t )  = -A within t h i s  

region. But any point within t h i s  region can be zeroed within time T 

by a P-0 t r a j ec to ry  because of t he  def in i t ion  of the  T-bang-coast 

isochrone. 

than a P-0 t ra jec tory ,  such a path m u s t  a r r i v e  too  early. 

We need only consider t h e  poss ib i l i t y  of a 

Inasmuch as a P-0-N t r a j ec to ry  would zero a state faster 

Furthermore, 
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f o r  T < K t h e  bang-coast isochrone l ies  below t h e  curve r+ ( re f l ec -  

t i o n  of t h e  zero t r a j ec to ry  about t h e  y1 or x axis). From Fig. 

3-2 such pseudoextremals a r e  not ET, = 0 extremals. Corollary 3-1 

prohibi ts  these P-0-Ne 

Y 1  
- 

1 

paths from being optimal because they do 

not meet t h e  t i m e  constraint  exactly.  

We now i l l u s t r a t e  t h e  P-0 t r a j ec to ry  t raced  by t h e  phase point 

(x , ( t ) ,x2(t) )  f o r  an i n i t i a l  disturbance (x10,x20 ) belonging t o  t h e  

region bounded by the  time dependent Tf-bang-coast isochrone and the  

f ixed rK and I' curves associated with optimal control  l a w  3-4. 

Referring t o  Figs.  3-29a,b,c,d as long a s  the  s t a t e  belongs t o  t h e  

+ + 

region j u s t  described t h e  cont ro l  remains u ( t )  = 0. But t h e  phase 

point 

t o ry  

lying 

always w i l l  belong t o  t h i s  region u n t i l  reaching t h e  zero t r a j e c -  

I?' a t  which point t h e  control  switches t o  +A. All states 

upon the  T-bang-coast isochrone, such a s  state X r ide  the  f a' 

shrinking bang-coast isochrone t o  t h e  or igin.  Other s t a t e s  such as 

Xb and Xc  are within the  T -bang-coast isochrone i n i t i a l l y .  Since 

they follow P-0 

f 

t r a j e c t o r i e s  they  a r r i v e  a t  t h e  zero t r a j ec to ry  ahead 

of t h e  shrinking isochrone. There t h e  cont ro l  switches t o  +A and t h e  

phase points continue along t h e  zero t r a j ec to ry  a r r iv ing  a t  t h e  origin 

f '  i n  a time less than T 

By assemblying optimal control  l a w s  (3-1)' (3-2), (3-3), and (3-4) 

w e  now have the  complete t i m e  varying feedback control  l a w  f o r  any state 

within t h e  T -controllable region. f 

t o  impose are 

The only r e s t r i c t ions  w e  have had 



Fig. 3-29a. Optimal P-0 Trajector ies .  Paths O,S1’Xa; 0,S2%; 0,s ,X 
3 c  

f 0  
are a l l  optimal f o r  a specif ied time of solut ion T 

F ig-  3-29b. All states i n i t i a l l y  within t h i s  region 
follow 0-arcs to I+* 
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-271 
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T" 

Fig. 3-29c. Both X and X w i l l  a r r ive  a t  o r ig in  ear ly  whereas 
Xa r i9es '  shrinking C bang-coast isochrone t o  a r r ive  
on schedule. 

0' 

-n 

+ -  + Fig. 3-2911. X reaches I" j % moves along I" ; Xa w i l l  a r r ive  
a€ o i n  prec ise ly  time T ~ .  



‘IC 
1) Tf <, 5 + arcsinh 1 

and t h a t  t h e  Tf-controllable region be l imited by 

2 )  -37c < x < 37c - 1- 

(3-129) 

(3-130) 

The complete cont ro l  law i s  shown i n  Fig. 3-30. 

Restr ic t ion (3-129) was imposed i n  order t o  l i m i t  any pseudoextremal 

candidates having both P and N-arcs t o  merely a P-0-N trajectoxy.  

We note t h a t  i n  t h e  proof of theorem 2-2 w e  have a lower bound on t h e  

t i m e  T f o r  which a longer sequence P-O-N-O**- or 0-P-0-N* * could f 

occur if it were i n  f a c t  a pseudoextremal. Because S/2 + arcsinh 1 i s  

a lower bound w e  might w e l l  expect t h e  r e su l t s  t o  hold equally well  

f o r  times as la rge  as  7 c .  No pseudoextremals were found using d i g i t a l  

computer simulations t o  contradict  t h i s  expectation. The lower bound 

of 3I/2 + arcsinh 1 i s  cer ta in ly  too  strong a bound inasmuch as it 

arose from the  consideration of a minimum time of solut ion - a t i m e  

l i m i t  which was lowered s t i l l  fu r the r  v i a  t h e  introduction of a reduced 

broader problem i n  appendix B. 

r a i s e  t h i s  power bound even though the  infinium of times f o r  which a 

P-0-N-0 pseudoextremal could occur probably i s  a t  l e a s t  

No a l t e rna te  proof was found which would 

7 c .  

Restr ic t ion (3-130) enabled us t o  l i m i t  our consideration of  

p-0-p-0 * * . pseudoextremals t o  a sequence P-0-P-0 or a truncation 

thereof.  If one now reca l l s  t h e  ac tua l  ea r th  pointing s a t e l l i t e  problem 

wherein the  x coordinate i s  1 

t h e  des i r ab i l i t y  of being able 

driven t o  some in t eg ra l  multiple of 

t o  zero t h e  i n i t i a l  s t a t e  (231,O) becomes 

431, 
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apparent. For i f  t h i s  state ( 2 ~ ~ 0 )  i s  within t h e  Tf-controllable 

region, t h e  T -controllable region about (4n,O) will overlap the  f 

Tf -controllable region about 

lab le  regions about t h e  points 4k% on t h e  x1 axis w i l l  then form a 

simply connected region. 

t i m e  Tf provided t h e  p i t ch  ve loc i ty  i s  not excessive; i.e., x2 l i e s  

within t h e  envelop of these 

Unfortunately t h e  requirement t h a t  t h e  

between t h e  l i n e s  x1 = 2 3% (3-130) excludes t h e  point ( 2 ~ ~ 0 )  from 

the  T -controllable-region. Should w e  adhere t o  (3-130) then there  

would be holes of uncont ro l lab i l i ty  within t h e  union of such 

controllable-regions corresponding t o  s t a t e s  we are unable t o  dr ive t o  

(4k%,0) within t i m e  Tf .  I n  Chapter IV w e  abandon r e s t r i c t i o n  (3-130) 

and admit P-O-P-O*** sequences with more than three  switchings. I n  

so doing w e  w i l l  a l so  leave our theorem-proof type format and generate 

these more complex switching surfaces on t h e  d i g i t a l  computer always 

taking advantage of t h e  s t ruc ture  already developed i n  t h i s  chapter. 

(0,O) The union of a l l  such T-control- 

We therefore  can cont ro l  any p i t ch  angle within 

T -controllable regions. See Fig. 3-31. 
f 

Tf -controllable region l i e  

f 

Tf-  



CHAPTER IV 

In  t h i s  chapter we remove the  requirement t h a t  t h e  T-controllable 

region always be bounded by t h e  l i nes  x = -3x and x1 = +3'sc t o  

which we adhered throughout chapter 111. I n  so doing w e  no longer may 

1 

exploi t  lemma 3-3 t o  l i m i t  our consideration of P-0-P-0-. . e pseudo- 

extremals t o  those with a t  most t h ree  switchings. I n  fac t ,  a s  w e  s h a l l  

see, f o r  a cont ro l  bound A = 3 and time of mission T = 'sc, w e  may 

have a s  many as f i v e  switchings on such a pseudoextremal. Thus t h e  

f 

control  law f o r  t he  region bounded by t h e  T-bang-coast isochrone and 

zero t r a j ec to ry  becomes much more complex than before. We content our- 

selves with the  generation of t h e  switching curves by a computer program 

which exploi ts  t h e  s t ruc tu re  of theorem 3-3. 

A s  before we consider only those backward t i m e  pseudoextremals 

beginning with a P-arc s ince iden t i ca l  reasoning yields analogous 

r e s u l t s  f o r  those pseudoextremals having cont ro l  i n i t i a l l y  -A. Further- 

more, we now relax t h e  time 

t o  K .  

Tf allowed f o r  solut ion from n/2 + arcsinh 1 

Whenever w e  s t i l l  l i m i t  t h e  maximum t i m e  of  solut ion t o  ~ / 2  + 

arcsinh 1, t h e  cont ro l  l a w  f o r  t h e  region bounded by the  upper T-minimum 

t i m e  isochrone and the  T-bang-coast isochrone remains unchanged; namely 

u ( t )  = -A. 

f o r  times T as large as K .  No contradictions were found while 

However, w e  s h a l l  assume t h a t  t h i s  control  law remains v a l i d  

generating P-0-N pseudoextremals on the  d i g i t a l  computer. FUrtheMnore, 

as already discussed, t h e  time r e s t r i c t i o n  rc/2 + arcsinh 1 f o r  



excluding t h e  occurrence of P-0-N-P pseudoextremals was too strong. 

Optimal cont ro l  l a w  3-1 cer ta in ly  remains va l id  f o r  t i m e s  T greater  

than fi/2 + arcsinh 1 and most l i k e l y  even f o r  t i m e s  T la rger  than 

fi. 

those s t a t e s  belonging t o  the  T-bang-coast isochrone, namely 

provided t h e  control  magnitude A s a t i s f y  equation (3-57). Our t a sk  

Theorem 3-2 continues a l so  t o  provide t h e  optimal cont ro l  f o r  

u ( t )  = 0, 

then i s  t o  determine t h e  new feedback cont ro l  l a w  f o r  t h e  region 

bounded by the  T-bang-coast isochrone and t h e  zero t r a j ec to ry  
+ 

I' . I f  

we f irst  relax t h e  previous constraint  on t h e  T-controllable region t o  

the  constraint  

obvious extension of lemma 3-3 y ie lds  t h e  r e su l t  t h a t  an a l te rna t ing  

P-0 type pseudoextremal has a t  most four  switchings. 

cont ro l  law f o r  t i m e s  large enough t o  permit t h e  T-controllable region 

The optimal 

t o  extend beyond t h e  l i n e  

i s  given i n  Fig. 4-1. 

y1 = 3fi yet  not beyond the  l i n e  y1 = 3fi+fi/2 

Whereas before the  T-third-switch isochrone 

extended from t h e  T-bang-coast isochrone a l l  t he  way t o  t h e  zero t r a j e c -  

t o ry  Ff and thereby par t i t ioned the  region within the  T-bang-coast 

isochrone, the  T-third-switch isochrone (111) now only extends t o  t h e  

point B of Fig. 4-1. 

t h e  locus of fourth switchings of a P-0-P-0-P 

I f  we define a T-fourth-switch isochrone t o  be 

pseudoextremal which 

occur exactly i n  backward t i m e  T, then the  T-fourth-switch isochrone 

jo ins  t h e  T-third-switch isochrone (111) at  B and l inks  back t o  t h e  



T-bang-coast isochrone as shown i n  Fig. 4-1. 

end t o  end t h a t  now i s o l a t e  one sect ion of t h e  region within t h e  T- 

bang-coast isochrone. For t h i s  section w e  have: 

It i s  these isochrones 

OPTIMAL CONTROL LAW 4-19 If a state (x,(t),x,(t)) res ides  a t  time- 

to-go 

isochrones and t h e  T-bang-coast isochrone t h e  optimal control  i s  

T within t h e  region bounded by t h e  T-third and T-fourth-switch 

u ( t )  = 0. 

A s  i n  chapter 111, t h e  point A must simultaneously represent 

both a second and t h i r d  switching s ince it belongs t o  the  T-bang-coast 

isochrone and the  T-third-switch isochrone. In  Fig. 3-19 t h e  l imi t ing  

behavior of t h e  adjoint  X f o r  such a point was i l l u s t r a t e d .  Further- 

more, the Q = R curve, which i s  t h e  locus of p o i n t s  a t  which t h e  

second and t h i r d  switchings coincide, i s  a f ixed  curve i n  s t a t e  space 

2 

beyond which an 

t h i s  chapter w e  

t o  indicate  t h e  

0-P corner did not occur. In  Fig. 4-1 a s  throughout 

L3 2 give t h e  Q = R curve the  more suggestive name 

l imi t ing  case where t h e  t h i r d  and second switchings of 

a P-0-P pseudoextremal coincide. A s  t h e  time-to-go T decreases, t h e  

T-bang-coast isochrone shrinks and t h e  point A, which i s  t h e  in te rsec-  

t i o n  of t h e  T-third-switch and T-bang-coast isochrones moves along the  

5 2  
curve 

For 

extrema1 were l imited t o  a region bounded by 

-3x 5 x1 5 +3x t he  second switchings of a P-0-P type pseudo- 

rx, Q = R curve, and 
+ 

t he  zero t r a j ec to ry  as  shown i n  Fig. 3-20. For x1 > 3x a second such 

region emerges consis t ing of second switch points of some P-0-P 
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T-MINIMUM-TIME ISOCHRONE 

T- BANG-COAST ISQCHRQNE 

Fig. 4-1. Emergence of T-Fourth-Switch Isochrone. Shaded regions have 
optimal control u =+O. 
longer extends to r , 

The T-Third-Switch Isochrone no 



pseudoextremals. See Fig. 4-2. The boundaries of t h i s  region are 

labeled L4_,2 and %2 for reasons ye t  t o  be developed. 

The notation L ( i=j+l) designates t h e  locus of phase points 
i j  

(xl,x2) where for some P-0-P pseudoextremal the  i - t h  and j - t h  

switchings coincide. The in teger  i represents t h e  highest  numbered 

switching under consideration. A t  Lij t h e  ad jo in t  X2 equals t he  

switching value +1 and i s  i n  addi t ion a t  a r e l a t ive  minimum or maxim. 

Since t h e  ad jo in t  X2 f a i l s  t o  cross t h e  switch l i n e  X2 = 1 a t  a 

point on 

In  any neighborhood of Lij t he  i - t h  and j - t h  switchings a r e  present. 

, t h e  i - t h  and j - t h  switchings do not occur i n  the  l i m i t .  
Li j 

The notation Li_, ( i= j+2)  designate the  locus of points (x,,x2) 

i n  state space f o r  which an i - t h  switch P-O-P-... pseudoextremal 

degenerates i n to  a j - t h  switch P-0-P type pseudoextremal. A t  Li 

t h e  adjoint  h2 again equals t h e  switching value +1, but  X2 i s  no 

longer a t  a r e l a t i v e  maximum or minimum on Instead a relative 

maximum or minimum with X = 1 occurred p r io r  t o  t h e  j - t h  switching 

and eliminated two switchings as i n  Fig. 4-3. 

L i j j *  

2 

A 

The behavior of t h e  ad jo in t  X2 corresponding t o  a P-0-P pseudo- 

extrema1 w i t h  second switching on t h e  boundary 

Fig. 4-3. The ad jo in t  i s  r ea l ly  a l imi t ing  case of t h a t  h2 

behavior shown i n  dashed l i nes .  The point of tangency T corresponds 

t o  e i the r  two switchings or i n  the l i m i t  zero switchings. A t  R then 

i n  t h e  l imi t ing  case a four  switch 

in to  a two switch P-0-P pseudoextremal. The locus of a l l  such points 

where the  second and four th  switchings coincide w e  designate 

accordance with our previous notation. 

L4+2 i s  given i n  

P-0-P-0-P pseudoextremal degenerates 

L4+2 i n  
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Fig. 4-2. Upper and Lower Regions of Second Switchings 
of a P-0-P Pseudoextremal, 
of these 0-P corner regions a re  time invariant .  

The boundaries 

A 

Fig. 4-3. Adjoint X Generatiag a Second Switching R a t  
t h e  L4+ 2 Boundary. The corresponding t r a j e c -  
t o r y  i s  given i n  Fig.  4-4. 



That; t h e  l i n e  L4+2 must be the  boundary of our second switch 

region i s  deduced by t h e  following argument. 

R' could occur along t h e  path OSR of Fig. 4-2 for R' < R. Then t h e  

adjoint  h2 

Fig. 4-3. It could not cross  t h e  k2 curve between T and S by 

reasoning analogous t o  t h e  proof of theorem 3 -3. 

e a r l i e r  switching from 0 t o  +A would have occurred contradicting 

t h e  assumption t h a t  R' i s  t h e  f i rs t  0-P corner. 

Suppose a second switching 

generating such a switching would have t o  be as shown i n  
A 

Consequently an 

The furthermost boundary I.;2 of t h i s  lower f i rs t  0-P corner 

region i s  the  locus of those points f o r  which the  second and t h i r d  

switchings coincide. The prime distinguishes t h i s  curve from t h e  

previous 

as t h e  l i n e  

(f irst  0-P corner) could not occur for x < 3* (see 3-130), t he  l i n e  

L'  i s  a boundary beyond which the  f i rs t  0-P corner can not occur f o r  

x1 1. 5s.  The ver i f ica t ion  proceeds ident ica l ly  as t h a t  i n  t h e  e a r l i e r  

result. The adjoint  h2 generating such a P-0-P pseudoextremal i n  

which the second and t h i r d  switchings coincide i s  shown i n  Fig. 4-4. 

boundary of t h e  upper f i rs t  0-P corner region. J u s t  

was a boundary beyond which the  second switching R 
'3 2 

'3 2 

1- 

32 

The method used t o  generate t h e  

We in tegra te  t h e  backward t i m e  system equations 

L4+2 l i n e  on the  computer i s  

suggested by Fig. 4-3. 

(2-2) and adjoint  equations (2-7) using cont ro l  l a w  (2-5) from some 

par t icu lar  i n i t i a l  conditions u n t i l  an 0-P corner occurs. The i n i t i a l  

conditions a re  suggested by (3-71) and Fig. 4-3; namely, 
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Fig6 4-4. Adjoint X2 Generating a Second Switching R a t  t h e  L 
Boundary of t h e  Lower F i r s t  0-P Corner Region. 32 

Fig. 4-5. Procedure for Adjusting Xls t o  Generate the  Curve L 32 

12 1 



x20 = 1 (4-4) 

h10 = 0 (4-5) 

The f a r  boundary L';2 
adjo in t  equations from t h e  i n i t i a l  conditions as given on t h e  switching 

from the  zero t r a j ec to ry  I'c i.e., a t  S.  Thus 

i s  generated by integrat ion of t h e  system and 

x2 s = 1  (4-7) 

(4-8) = negative constant t o  be adjusted 

where y i s  t h e  smallest value of y f o r  which a second switching 

(0-P 

The scheme f o r  obtaining 5, 
point S, 

After t h e  0-P corner i s  found, hls 

lS0 Is 

L4 -+2 corner) occurred i n  the  previous scheme f o r  generating 

then is  t o  be given an a r b i t r a r y  switch 

and t o  in tegra te  along the  0-arc u n t i l  an 0-P corner occurs. 

i s  rese t  so t h a t  

and we in tegra te  again u n t i l  e i t h e r  h2 exceeds one or a r e l a t i v e  



m a x i m u m  occurs. If t h e  condition 

h2 > 1 (4-11) 

occurs first, w e  continue t h e  scheme. If a r e l a t i v e  maximum occurs 

first, w e  back up and readjust  hls 

The procedure i s  i l l u s t r a t e d  by Fig. 4-5. 

have already seen t h a t  t h e  point A moves with t h e  shrinking T-bang- 

coast isochrone along 

t h e  point C 

coast and T-fourth switch isochrones must represent t he  degeneration 

of a four  switch pseudoextremal in to  a two switch pseudoextremal. 

points as C must belong t o  L4+2. A s  t h e  time-to-go decreases, 

t h e  point C moves along L4+2 toward r with t h e  shrinking bang- 

coast isochrone a s  seen i n  Fig. 4-6. 

t o  converge on t h e  l imi t ing  case. 

Referring t o  Fig. 4-6 w e  

a s  t he  time-to-go becomes less. Likewise 

of Fig. 4-6 designating the  in te rsec t ion  of t he  T-bang- 
'3 2 .-. 

Such 

+ 

The point B designating the junction of t he  T-third and T-fourth 

down t o  the  zero L43 switching isochrones s imi la r ly  follows t h e  curve 

t r a j ec to ry  r as t h e  time-to-go decreases. The adjoint  behavior 

corresponding t o  the  coincidence of t he  t h i r d  and four th  switchings i s  

given i n  Fig. 4-7. From chapter 111, for T su f f i c i en t ly  small the  

T-third switching locus re jo ins  the  zero t r a j ec to ry  

+ 

I? and there  can 

be no four th  switching, i .e.,  the  T-fourth switching isochrone disappears. 

Thus when B reaches I' , C simultaneously reaches r and i s  
+ + 

coincident with B i n  order t h a t  t he  T-fourth switching isochrone vanish. 

in te rsec t  t h e  zero t r a j ec to ry  a t  L43 and L4+2 Therefore the  curves 

a common point G as shown i n  Fig. 4-6. 
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Fig. 4-7. Adjoint Behavior Generating a Point on t h e  
L43 Curve f o r  which t h e  Third and Fourth 
Switchings Coincide. 

0 

I 

G - Yl 

Fig. 4-8. Special  Adjoint Solution Corresponding t o  an 0-P 
Corner a t  t h e  Point G. Four switchings degenerate 
i n t o  two via t h e  first tangency; t he  four switching 
coincides with the  t h i r d  at  t h e  second tangency. 



A t  t h i s  spec ia l  point not only must t h e  t h i r d  switching be coinci-  

dent with t h e  second 

t o  two 

(52) but  a l s o  four  switchings must degenerate 

The spec ia l  ad jo in t  solut ion corresponding t o  t h i s  (L4,2 ). 
behavior i s  given by Fig. 4-8. 

We now il lustrate a typ ica l  P-0-P-0-P t r a j ec to ry  resu l t ing  from 

our extended region of cont ro l  by Figs. 4-9a,b,c. 

within the  u ( t )  = +A region, i.e., t h e  unshaded region within t h e  

T-bang-coast isochrone of Fig. 4-9a may experience four  switchings. 

Such a state X continues on a P-arc u n t i l  meeting the  oncoming T- 

fourth-switch isochrone a t  which point a P-O corner occurs. The state 

now i s  within t h e  u = 0 cont ro l  regionrand continues with cont ro l  zero 

u n t i l  reaching the  boundary of t h e  shrinking T-third-switch isochrone. 

The s t a t e  then reenters  t h e  u = +A region and continues on a P-arc 

u n t i l  it in t e r sec t s  t he  shrinking T-bang-coast isochrone a t  which t i m e  

control  switches t o  zero and t h e  s t a t e  r ides  t h e  shrinking bang-coast 

isochrone t o  the  or igin.  

as t h e  behavior of t h e  cont ro l  regions during these portions were 

previously i l l u s t r a t e d  i n  Fig. 3-25. 

Only a state i n i t i a l l y  

The f i n a l  portions of t he  t r a j ec to ry  as w e l l  

If w e  now re lax  T s t i l l  fu r the r  so t h a t  now t h e  Tf -  control lable  f 

region includes t h e  point of in te rsec t ion  of t h e  l i n e  

t r a j ec to ry  r', a t h i r d  u = 0 cont ro l  region emerges as shown i n  

Fig. 4-lOa. Now t h e  t i m e  i s  su f f i c i en t ly  long f o r  t he  lower P-0-P 

L;2 and zero 

t r a j e c t o r i e s  - those having 0-P corners i n  t h e  lower 0-P corner region - 
t o  have a t h i r d  switching. 

switchings f romthose  of t h e  upper region w e  have: 

Using a prime t o  dis t inguish these t h i r d  



- n  

-3n 

2 

T - M~NIMUM-TIME ISOCHRONE 

Fig. 4-9a. Four Switch P-0-P-0-P Trajectory of Optimal Control Law 4-1. 
Dashed path i s  ye t  t o  be traversed whereas so l id  path i s  
t h a t  already traversed. 



2 . 

Fig. 4-9b S ta t e  X co l l ides  with oncoming T-fourth-switch 
isochrone ( I V )  a t  P and cont ro l  switches t o  zero. 

Fig. 4-9c. Sta t e  X i s  coasting within t h e  region 
of optimal cont ro l  l a w  3-2. 
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OPTIMAL CONTROL U W  4-2. Any s t a t e  (x,(t),x,(t)) res iding a t  t i m e -  

to-go T within t h e  region bounded by the  T-third-switch isochrone and 

t h e  T-bang-coast isochrone has optimal cont ro l  u ( t )  = 0. 

The optimal t r a j ec to ry  f o r  a s t a t e  X belonging t o  t h i s  region 

a t  time-to-go T i s  i l l u s t r a t e d  by Figs. 4-10atb,c. S t a t e  X proceeds 

along an 0-arc u n t i l  catching t h e  shrinking T-third-switching boundary 

a t  time T1. The cont ro l  then switches t o  +A. The state continues 

along a P-arc u n t i l  it col l ides  with t h e  shrinking bang-coast isochrone 

a t  time T2 a t  which time t h e  cont ro l  switches t o  zero. Thereafter 

t h e  s t a t e  merely r ides  t h e  shrinking isochrone t o  the  region. 

THE OCCURRENCE OF THE FIFTH SWITCHING 

In  order t h a t  a switching occur a t  t h e  point D, where the  f ixed 

l i nes  L' and L4+2 in te rsec t ,  t h e  second, th i rd ,  and fourth switch- 

ings of a P-0-P type pseudoextremal must simultaneously occur. 

Figs.  4-6, 4-lOa.) 

nearby P-0-P type pseudoextremals approach D, t he  associated 

P-0-P-0-P, P-0-P-0, and P-0-P pseudoextremals degenenate t o  a P-0 

pseudoextremal. 

pseudoextremal i s  given i n  Fig. 4-11. 

32 
(See 

A s  t h e  fourth, th i rd ,  and second switching points of 

The adjoint  behavior generating such a degenerate 

radiat ing from the  '32 and L4+.2 

54 

In  addi t ion t o  t h e  l i n e s  

and L a l so  emanate from t h a t  point D, t h e  analagous l i n e s  L 

point.  The l i n e  L 

f o r  which a P-0-P-0-P-0 or f i v e  switch t r a j ec to ry  degenerates i n to  a 

P-0-P-0 or th ree  switch t ra jec tory ,  i s  shown i n  Fig. 4-14. The l i n e  

5-3 
representing the  locus of those switch points 5 +3' 



I c 

k k 
I N 

I 

0 

z 
I 

. 
cd 
0 
rl 

;t 
I 

130 



-n 

-27 

- 
Fig. 4-lob. 

0 

-7r 

-27: 

A t  time-to-go T 

switches t o  +A. 

s t a t e  X catches t h e  shrinking 
T1-third-switchlng d- isochrone ( 111' ) and control 

2 

Fig. 4-lOc. S t a t e  X co l l ides  with shrinking bang-coast i s o -  
chrone a t  R a t  time-to-go T and the rea f t e r  ' r i des '  
t h a t  shrinking isochrone t o  2 t h e  or igin.  



L 5 -33 

L4 4 2  

adjoint  h2 i s  shown i n  Fig. 4-12. A s  t he  r e l a t ive  maximum of h2 

(M1 i n  Fig. 4-12) approaches t h e  value h = 1, t h e  corresponding 

switching points of L54 approach D. On L5& (Fig.  4-14) where the  

fourth and f i f t h  switch points coincide, t h e  adjoint  

i n  Fig.  4-13. A s  the  r e l a t ive  minimum of h2 (M2 i n  Fig. 4-13) 

i s  generated by merely extending the  pseudoextremals generating 

up t o  the  next switching point. The corresponding l imit ing 

2 

h2 behaves as 

approaches the  point 1 D. 5 4 approaches the  value h = I, t he  locus 

Then in  an a r b i t r a r i l y  small neighborhood of D there  a re  switchpoints 

representing a second, t h i rd ,  fourth, or even f i f t h  switching f o r  some 

pseudoextremals consisting of  a l te rna t ing  P and 0-arcs . 

2 

From Fig. 4-11 the  point D corresponds t o  the  second r e l a t ive  

maximum of h Reasoning as i n  lemma 3-3 yields  t h e  r e su l t  t h a t  t h e  

x coordinate of t he  point D-x s a t i s f i e s  

2' 

1 1D 

3z+ K / 2  < XID < 4 K  (4-12) 

It i s  only when the  time-to-go T becomes so large t h a t  t h e  point D 

belongs t o  t h e  region bounded by t h e  T-bang-coast isochrone and zero 

t r a j ec to ry  t h a t  a f i f t h  switching occurs. 

two 

the  T-bang-coast, T- third switch, T-fourth switch, T - f i f th  switch, and 

T-third '  switch isochrones as shown i n  Fig. 4-14. 

we have: 

In  such a case the  lower 

u = 0 cont ro l  regions re jo in  t o  form a single  region bounded by 

For t h i s  region 
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OPTIMAL CONTROL L A W  4-30 Any s t a t e  (x,(t),x,(t)) belonging a t  t i m e -  

to-go T t o  t h e  region bounded by t h e  T-bang-coast, T-third switch, 

T-fourth switch, T - f i f th  switch, and T-third'  switch isochrones has 

optimal cont ro l  u(x,(t) ,x,(t))  = 0. 

Sta tes  i n i t i a l l y  belonging t o  t h i s  region have as optimal paths 

e i t h e r  a t h ree  switch P-0-P-0 t r a j ec to ry  or a f i v e  switch P-0-P-0-P-0 

t ra jec tory .  Any s t a t e  within t h i s  region moves along an 0-arc u n t i l  

reaching t h e  t i m e  dependent boundary of t h e  region a t  which t i m e  a 

switching occurs. Those s t a t e s  which meet t h e  t h i r d  switch isochrone 

boundary ( a rc s  AB and EF of Fig. 4-15) w i l l  be zeroed by a P-0-P-0 

path. Crossing t h i s  boundary t h e  cont ro l  switches t o  +A and the  

phase point continues along a P-arc u n t i l  meeting t h e  shrinking T-bang- 

coast  isochrone. 

over t o  I" and follows t h a t  P-curve t o  t h e  or ig in .  The upper t r a j e c -  

t o r y  of Fig. 4-15 i l l u s t r a t e s  t he  case where the  phase point i n t e r sec t s  

Thereafter t he  phase point coasts along an 0-arc 

t h e  boundary a t  t h e  T- f i f th  switch isochrone. The state then moves 

along a P-arc u n t i l  meeting t h e  oncoming T-fourth switch isochrone a t  

which time it re-enters t he  u = 0 cont ro l  region. By now t h e  lower 

u = 0 control  region of Fig. 4-15 has shrunk considerably and possibly 

s p l i t  i n to  two regions as i n  Fig. 4-lOa depending upon the  t i m e  

remaining. The phase point then continues along an 0-curve u n t i l  

catching t h e  moving third-switch isochrone boundary. The motion 

the rea f t e r  has already been described by Fig. 3-25. 

No s t a t e  belonging t o  t h e  region of cont ro l  law 4-3 can in te rsec t  

t h e  boundary of t h i s  region a t  t h e  fourth switch isochrone. The fourth- 
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switch isochrone i s  moving t o  t h e  l e f t  faster than t h e  phase point i s  

moving along t h e  0-arc. 

Extending t h e  result of lemma 3-3 w e  f i n d  t h a t  a t  most five switchings 

may occur i n  a P-0-P type pseudoextremal whenever x is  r e s t r i c t e d  t o  

the  cylinder 

1 

-5x < - x1 5 57c (4-13 

If we adhere t o  t h e  m a x i m u m  t i m e  r e s t r i c t i o n  

3-c 
T < - 2 + arcsinh 1 (4-14) 

we have completely characterized t h e  f u e l  optimal, t i m e  varying feedback 

cont ro l  law provided t h a t  t he  T-controllable region s a t i s f i e s  (4-13). 

Moreover t h e  T-controllable region may now sa,tisfy r e s t r i c t ions  (4-13) 

and (4-14) and s t i l l  include the  phase point 

require t h e  cont ro l  magnitude 

(231,O). To do t h i s  would 

A t o  be su f f i c i en t ly  large so  t h a t  

7c 
da < - x + arcsinh 1 2 - 2  o  COS a-1)+2Aa15/ 

o r  evaluating numerically condition (4-1.5) 

A > - 4.57 (4-16) 

Rather than i n s i s t  t h a t  A be a t  least 4.57 t i m e s  the  maximum 

gravi ta t iona l  torque, w e  s h a l l  replace (4-14) by 



T <-a - (4-17) 

i n  order t h a t  even smaller cont ro l  torques w i l l  be su f f i c i en t  t o  

guarantee t h a t  t h e  phase point (2a,O) belong t o  t h e  T-controllable 

region. Our character izat ion of t h e  fuel optimal feedback cont ro l  l a w  

is  now complete provided Optimal Control l a w  3-1  continues t o  hold for 

a l l  T sa t i s fy ing  (4-17). All indicat ions tend t o  subs tan t ia te  t he  

claim t h a t  indeed Optimal Control l a w  3-1 remains va l id  for such T.  

I 

Instead of driving the  state t o  t h e  or ig in  (O,O), w e  now seek 

the  optimal cont ro l  l a w  f o r  driving t h e  s t a t e  t o  

f u e l  expenditure. Because both the  state and ad jo in t  var iables  are 

governed by d i f f e r e n t i a l  equations (1-3) and ( 1-15 ) t h a t  a r e  invariant  

under t h e  t r ans l a t ion  

(4n,O) with minimum 

A 

x = x + 4kx k integer  1 1  

or i n  backward t i m e  formulation 

A 

Y1 = y1 + 4ka 

(4.48) 

(4-19) 

t h e  f u e l  optimal switching surface f o r  driving t h e  state t o  

just t h e  switching surface already derived t r ans l a t ed  

xl(yl) direct ion.  Inasmuch as the  state (2n,0) i s  within t h e  T-con- 

t r o l l a b l e  region centered about 

centered about (4~,0)  w i l l  overlap that centered about ( 0 , O )  t o  

form a simply connected region. The union of a l l  such T-controllable 

regions w i l l  contain no holes of uncontrollable states; the  feedback 

(4kfi,0) i s  

units i n  the  4kfi 

(0, 0), t h e  T-controllable region 
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cont ro l  law i s  given f o r  a l l  values of the  p i t ch  coordinate. 

r e s t r i c t i o n  is t h a t  t h e  p i tch  ve loc i ty  

The only 

x2 m u s t  l i e  within t h e  envelope 

of  these T-controllable regions. 

From equation (1-10) the  p i tch  error r a t e  satisfies 

2 RX 
* n q  e = -  

2 
(4-20) 

i s  an i n e r t i a l  parameter of t he  s a t e l l i t e  and R t he  o r b i t a l  K3 where 

angular veloci ty .  From Fig. 4-16, f o r  t he  cont ro l  magnitude A = +3 

and time of  mission a, any state having ve loc i ty  x l e s s  than  

approximately K can always be controlled.  Our control  law can zero 

2 

any ac tua l  pi tch e r ror  r a t e  6 

within normalized t i m e  T = TC or r e a l  time tf 

K t =  
J3$n 

(4-21) 

(4-22) 

for t he  parameter A = +3. 

A 

By increasing t h e  magnitude of cont ro l  torque 

even grea te r  e r r o r  r a t e s  could always be zeroed while realigning t h e  

earth-pointing s a t e l l i t e  within 

J u s t  a s  i n  equation (3-14) 

vk( xl, x2 , T ) = 

t h e  same fixed t i m e  tf .  

w e  may introduce a minimum cos t  function 

(4-23 

- 
where % 

state from (x1,x2) t o  (4ka,0) within time T. A s  before, k i s  

i s  t h e  set of a l l  admissible controls  which t r ans fe r  t h e  

14 1 



an integer.  

ments. One would therefore  expect t h a t  t i m e  dependent curves pa r t i t i on  

t h e  s t a t e  space in to  segments within which it is  more economical t o  

drive the  state t o  t h e  included point (4kn,O) than any o ther  such multi- 

Such a function is  ce r t a in ly  continuous i n  a l l  i t s  argu- 

ple  of 43~. Such curves a r e  defined by the  following: 

k D E P I N I T I O N  4-10 The T- indifference curve i s  the  set of  a l l  s t a t e s  

(x,,x2) such t h a t  

(4-24) 

Any s t a t e  lying on such a curve may be driven t o  

(4(k+l)~t,O) with equal f u e l  economy. Such indifference curves a r e  

shown i n  Figs.  4-16, 4-17, and 4-18 displaying the  complete feedback 

optimal cont ro l  l a w  for t he  a c t u a l  earth-pointing s a t e l l i t e  problem. 

From symmetry arguments t h e  point (4kn+2n,0) w i l l  always belong t o  

such a curve provided T i s  su f f i c i en t ly  la rge  t o  allow such a point 

t o  be controlled.  A s  t h e  time-to-go becomes l e s s  each such indifference 

curve s p l i t s  i n to  two segments due t o  t h e  enlargening hole developing 

i n  the  T-controllable region. These two curves gradually shrink and 

f i n a l l y  vanish when the  t i m e  T i s  so short  t h a t  t h e  T-controllable 

regions centered along t h e  x axis a t  multiples of  4kn no longer 

overlap as i n  Fig. 4-18. 

( 4 k . 1 ~ ~ 0 )  or 

1 
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CHAF'TER V 

COMPARISON OF THE LINEAR AND NONLINEAR OPTIMAL CONTROL PROBLEMS 

Due t o  t h e  technical  d i f f i c u l t i e s  encountered i n  t h e  nonlinear 

analysis  of  optimization problems, wherever an equation such as (1-1) 

appears, one frequently l inear izes  t h e  equation and considers only 

small motions of t he  system. 

of such analysis  t o  motions t h a t  a r e  by no means small with t h e  expecta- 

t i o n  of obtaining reasonable conclusions f o r  t h e  nonlinear regime. 

r e su l t s  of both t h e  l i n e a r  and nonlinear plants are presented t o  indicate  

how f a r  one may extend t h e  r e su l t s  of t h e  l i n e a r  analysis  i n t o  t h e  non- 

l i nea r  region and s t i l l  obtain good performance estimates.  

A t  t i m e s  one may even apply the  r e s u l t s  

The 

The l inear ized plant dynamics are governed by 

%(t) + x ( t )  = u lul < , A  (5 -1-1 

Again w e  seek an admission cont ro l  

from some known i n i t i a l  s t a t e  (x,(to),x,(to)) t o  the  terminal s t a t e  

(x l ( t f ) , x2 ( t f ) )  = (0,O) within a specif ied time T = t -t . The 

solution of t h i s  problem i s  contained in  Ref. [ g ] .  

u ( t )  which t r ans fe r s  the  state 

f o  

The main differences encountered i n  t h e  two problems a r e  

i) Whereas the  optimal cont ro l  i n  e i t h e r  case i s  of 

type bang-coast-bang, t h e  l i n e a r  optimal control  u ( t )  i s  a periodic 

function of time with period 31. An optimal path cons is t s  of a l t e rna t ing  

P and N-arcs separated always by an 0-arc or a t runcat ion of such a 
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path should the  t i m e  T be less than a complete period a.  In  

contrast  t h e  nonlinear optimal cont ro l  is not periodic. 

optimal control  sequences of type P-O-P-... where P (or N)- 

arcs  a l t e rna te  with 

Furthermore, 

0 - a rcs  are present. 

ii) The number of  switchings may be qui te  d i f fe ren t .  For 

T < - a t h e  l inear  problem has a t  most two switchings. 

number of switchings t h a t  can occur for solut ion t i m e  

an optimal path f o r  t h e  nonlinear problem depends upon the  magnitude of 

t h e  cont ro l  bound A. For A equal 2 a t  most t h ree  switchings could 

occur as a P-0-P-0 ( N - 0 - N - 0 )  path i s  the  longest sequence. In  chapter 

IV, it has been shown t h a t  for A equal 3 an optimal sequence could 

have f i v e  switchings. A s  A increases without bound one expects t h e  

maximum number of switchings occurring f o r  solut ion time IC t o  a l so  

grow without bound. In  t h e  l imi t ing  case t h e  problem reduces t o  the  

us2 plant: 

The maximum 

T < a along - 

/ 

.. x ( t )  = u lul < A  (5-2) 

which may have an unbounded number of switchings along s ingular  arcs,  

which arise for appropriate i n i t i a l  conditions as seen i n  Ref. [ 9 ] .  

iii) There may be b i g  differences i n  the  f u e l  required 

t o  zero an i n i t i a l  disturbance within t i m e  T. 

(5-5) t h e  f u e l  cos t  i s  p l o t t e d  as a function of t h e  i n i t i a l  state 

var iable  x 

The permitted t i m e  for t h e  maneuver i s  T = .75a and the  cont ro l  bound 

I n  figures (5-1) t o  

for di f fe ren t  values of t he  other  s t a t e  var iable  x20. 10' 

A = 3 .  



This value of T corresponds t o  allowing 3/8 of an o r b i t  t o  

real ign a satel l i te  having the  i n e r t i a l  parameter K = - J 3 .  Further- 

more, such a value i s  representative of t he  times w e  have been consi- 

dering; namely, t i m e s  T l e s s  than a. Also the  t i m e  T i s  su f f i c i en t ly  

large t o  allow zeroing of large disturbances so t h a t  w e  obtain good 

contrast  of the l i n e a r  and nonlinear r e su l t s .  

3 

The cont ro l  bound of A = 3 w a s  se lected t o  enable t h e  zeroing 

of  t h e  disturbance (2a,O) within t i m e  7c and thereby remove t h e  

"holes" of t h e  control lable  region discussed i n  chapter IV. With t h i s  

bound on t h e  control,  any p i tch  e r r o r  may be zeroed provided the  p i t ch  

e r r o r  r a t e  l i e s  within t h e  envelope of t he  T-controllable regions. 

The la rger  t he  cont ro l  bound A t h e  l e s s  f u e l  required t o  zero a given 

i n i t i a l  disturbance within t i m e  T. Increasing the  bound A on ava i l -  

able control  torque u, while lowering f u e l  consumption, i s  not without 

penalty. The l a rge r  weight requirement necessary t o  provide l a rge r  

cont ro l  torques may s ign i f i can t ly  a l t e r  t h e  s a t e l l i t e  configuration 

( i n e r t i a l  parameters) i n  addition t o  imposing ra ther  severe r e s t r i c t ions  

on t h e  weight of usefu l  payload. The f u e l  savings i n  zeroing the  s t a t e s  

of i n t e r e s t  of la rge  A values i s  not su f f i c i en t  t o  j u s t i f y  the  extra  

hardware. Furthermore, as presented l a t e r ,  t h e  magnitude of e r ro r s  

i n  fuel expenditure of a d i scre te  t i m e  suboptimal feedback cont ro l  law 

increases a s  t he  control  bound A increases.  The value A = 3 where 

the  avai lable  cont ro l  torque i s  three  times t h e  m a x i m u m  grav i ta t iona l  

torque i s  a good compromise. 

i n t e re s t  i s  achieved without undue cont ro l  torque requirements. 

Ef f ic ien t  zeroing of disturbances of 



The f u e l  cos t  curves a re  given only for negative values of x20 
inasmuch as a r e f l ec t ion  of t h a t  curve about t h e  f u e l  axis gives the  

f u e l  cost  curve f o r  t he  corresponding posi t ive x value. In  general 

f o r  a f ixed  value of x the re  a re  zones f o r  which the  l i n e a r  plant 

exhibi ts  grea te r  f u e l  economy and zones f o r  which t h e  nonlinear plant 

is  more e f f i c i e n t .  If x20 < 0, t h e  nonlinear appears t h e  more 

20 

20 

economical when x > 0 and l e s s  economical f o r  x < 0. The 10 10 
grea tes t  discrepancy between t h e  optimal f u e l  prediction of t he  l inear ized 

model and t h e  ac tua l  optimal f u e l  requirement of t h e  

occurs for those values of x lying near e i t h e r  t h e  l i n e a r  or non- 

l i nea r  T-minimum-time isochrone. Here a severe f u e l  penalty i s  pa id  

t o  meet t h e  t i m e  constraint  and the  corresponding f u e l  cost  curve rises 

much more rapidly than the  other  fuel  cost  curve. 

nonlinear system 

10 

In  Fig.  5-6, t h e  importance of allowing as much time a s  i s  

reasonable t o  complete the  earth-pointing maneuver t o  avoid such 

extravagant f u e l  expenditures i s  fu r the r  emphasized. A s  t he  t i m e  T 

approaches the  minimum s e t t l i n g  t i m e  for t h e  i n i t i a l  state 

the  slope of t h e  f u e l  versus t i m e  curve becomes i n f i n i t e .  If 

( X ~ ~ , X ~ ~ ) ,  

aF 

F = -V(X 10’X20”T) 

then t h e  Hamilton-Jacobi p a r t i a l  d i f f e r e n t i a l  equation (3-1.7) 

(5 -3 1 

indicates  t h a t  t h e  Hamiltonian H becomes unbounded as the  f u e l  optimal 

solut ion degenerates i n to  the minimum t i m e  solution. 
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A t  those points f o r  which a switching occurs a t  t i m e  T, t he  slope 

i s  discontinuous. 

t o  t he  Hamilton-Jacobi canonical equations ex i s t s  and the  slope i s  w e l l  

defined and continuous. 

i n  Fig. 5-6 the  Hamiltonian i s  zero t o  the  r igh t  of t he  corner, and 

no reduction i n  f u e l  expenditure i s  achieved by relaxing the  t i m e  con- 

s t r a i n t  over t h e  in t e rva l  shown. 

To the  l e f t  or r igh t  of such a corner the solut ion 

In t h e  example with (x 10~x20) = ( - 2 , 2 )  shown 

A s  one would expect, t he  r e su l t s  of t h e  l i nea r  and nonlinear 

20 
analysis  are l e s s  and l e s s  s imi la r  as the  absolute value of  x 

increases.  Finally,  as  shown i n  Fig. 5-5, no s t a t e  with x .= -4 can 

be zeroed within the  specif ied time T = . 7 5 ~  by the  l i nea r  solution. 

However, there  i s  a surpr is ingly large region for which the  l inear  

solut ion predicts  t he  optimal performance of t h e  nonlinear system with 

good accuracy. For t h e  region 

20 

-1 < Xl0 < +1 
(5-5) 

-2 < x20 < +2 

t h e  grea tes t  e r ro r  i s  about 12.576 f o r  t h e  case A = 3 and T = .753r. 

For most of t he  region there  i s  much c loser  agreement. In  terms of 

t he  ac tua l  p i tch  e r ro r  8 and e r ro r  r a t e  6 of the  s a t e l l i t e  region 

(5-5) i s  

-.5 < e < +.5 

- J q q n <  6 < + J X n  3 

where fi i s  the  angular frequency of the  s a t e l l i t e  o r b i t .  

(5-6) 
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FUEL COSTS CUHVES AND HAMILTON-JACOB1 THEOFE 

The f u e l  cos t  curves a r e  intimately connected t o  the  Hamilton- 

Jacobi theory as seen i n  the  discussion following theorem 3-1, The 

slope - aF of these curves i s  equal t o  t h e  value of t h e  adjoiut  
axlo 

) corresponding t o  t h e  optimal (x 10’ x20 var iable  h a t  t h e  point 

pseudoextremal f o r  zeroing t h e  s t a t e  

slope becomes v e r t i c a l  a t  the  end points a s  the  ad jo in t  var iables  be- 

come i n f i n i t e  and the  f u e l  optimal solution degenerates i n to  t h e  minimum 

1 

) within time T. This ( 10’ x20 

t i m e  solution. 

Corners where t h e  slope i s  discontinuous appear i n  both the  l i nea r  

and nonlinear f u e l  cost  curves. 

a t  t h e  in te rsec t ion  of t he  horizontal  l i ne  x = f ixed constant and 

t h e  zero t r a j ec to r i e s :  

For  the  l i nea r  case one corner appears 

20 

x 20 = -!- /- A -(xl0+A) f o r  -a 5 xl0 <_ 0 (5  -7) 

x 20 = -/A- f o r  0 5 xl0 <_ 2A (5-8) 

which are the  f i n a l  semicircular a rcs  of t h e  switching locus for t he  

Bushaw problem (Ref. [lo]). For 

t he  l i nea r  solut ion curve. 

/x20] > A the  corner disappears i n  

More pronounced a r e  t h e  corners i n  the  nonlinear f u e l  cost  curves. 

The f i rs t  corner x i s  a t  the  in te rsec t ion  of t h e  horizontal  l i n e  

x = present constant and t h e  zero t r a j ec to ry  r . For those s t a t e s  

IC r 
+ 

20 

immediately t o  t h e  r igh t  of x t h e  optimal paths a re  e i the r  P-0-P IC r 

15 7 



o r  P-0 pseudoextremals depending upon whether or not t h e  in te rsec t ion  

occurred a t  a value x > ‘JI. The subscr ipt  c r  denotes the  value a t  

t h e  corner. In  terms of x20 then w e  have a P-0-P t r a j ec to ry  f o r  

IC r 

x 20 < -  COS R-~+A‘JI) (5-9) 

and a P-0 t r a j ec to ry  f o r  

x 20 > -  COS j-i-l+AaJ (5-10) 

Immediately t o  t h e  l e f t  of t he  corner 

extremals f o r  time T = .75j-i a r e  of type N-0-P. 

(xl0 < xlcr) t he  optimal pseudo- 

The second corner is  a t  t h e  in te rsec t ion  of t h e  given horizontal  

l i n e  x = constant and the  T-bang-coast isochrone where T here has 

the  value .75n. For points immediately t o  t h e  l e f t  (xl0 < xlcr) of 

t h i s  corner t h e  optimal pseudoextremal i s  e i the r  a P-0-P or P-0 path 

depending upon whether t h e  corner l i es  t o  t h e  r igh t  of 

pseudoextremals for those x ( t )  which have x1 > xlcr are P-0-N 

t r a j ec to r i e s .  

20 

+ rX. The optimal 

Since such a corner represents a switching, theorem 3-1 does not 

guarantee the  existence of a solut ion t o  t h e  canonical charac te r i s t ic  

d i f f e r e n t i a l  equations. Inasmuch as the  slope has a discont inui ty  of 

t h e  f irst  kind a t  t h i s  corner we expect no solut ion t o  (3-19), i .e . ,  t o  

, t )  i s  t h e  optimal f u e l  cos t .  However, w e  may 10’x20 where F = -v(x 

1.58 



s t i l l  associate  t h e  slope immediately t o  t h e  l e f t  or r igh t  of t h i s  

corner with the  value of the adjoint  X1 a t  t h e  corner f o r  t h e  

appropriate pseudoextremal. The slope t o  the  r igh t  i s  given t h e  value 

of t h e  adjoint  

0 t o  -A a t  t h e  corner. From equation (3-4) along an 0-arc 

hl f o r  a P-0-N pseudoextremal having a switching from 

where the  subscript  s now denotes values at  t h e  switching from t h e  

zero t ra jec tory .  

) denote the  coordinates of such a corner then t h e  If (Xlcr’x2cr 

Hamiltonian of such a P-0-N pseudoextremal i s  given by 

(+ - -) 1 
X 

(5-133) 2cr  2s 
% =  

[lCr-[2( cos C-cos x 1s ) + X ~ ~ ] - ~ / ~ ~ C  
I Is 

where we have made use of  t he  f a c t  t h a t  

Since (xls,x2s) and (xlcr>-x ) belong t o  the  same 0-curve 

h = -1 i n  equation (5-12) 2 

2c r 

2 2 

2 1s 2 

X 
X 2s cos x = - 2cr  - cos x - -  

l e  r 

But is a point on t h e  zero t r a j ec to ry  r+ or 
2 

2 1s 

X 
- -  2s cos x = Axls‘ 1 

Combining (5-14) and (5-15) w e  obtain 

2 =(. X - x  + 1 ) / A  

IC r 2 X 1s 

(5-14) 

(5-15) 
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with which x2s may be determined from (5-15) Since a t  a switch 

point 

1 % = -h x + h  s i n  x 1 2  2 (5 -17) 

w e  obtain 

€$+ h2sin x 
(5-18) - l r  

2c r ' lcr  - - X 

The slope t o  t h e  r igh t  of 

(5-11) and (5-18) t o  get 

xlcr i s  obtained by combining equation 

H + s i n  x &F B IC r 
X 2cr  a = -% = 10 X (5-19) 

where % i s  given by (5-13). 

In  the  case of a P-0-P pseudoextremal being o p t i m a l  for xl0 < xlcr 
w e  make use of t he  f a c t  that 

Hamiltonian 

X2 = +l i n  equation (5-12) t o  obtain t h e  

x /  \X2cr  2s 

€ $ =  1 x 1 c r - [ 2 ( ~ ~ ~  u-COS x ) + X E ~ I - ~ ' ~ ~ ~  1s x 1s 

and t h a t  

Kg-sin x &F lc r 
IC r X 2c r a=-h = 10 X 

(5-20) 

(5 -21) 

+ 
a P-0 10 < X l c r  Should ( ~ ~ ~ ~ ' x ~ ~ ~ )  l i e  above rR then f o r  x 

pseudoextremal i s  optimal. In  t h i s  case t h e  Hamiltonian i s  zero and 

t h e  s lope  i s  obtained from (5-12) and (5-18) 
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The ad jo in t  value 

from (5 -12) with t h e  Hamiltonian being zero. 

h2cr i s  no longer a t  a switching but  i s  obtained 

X 2c r = -  
‘2cr x 2s 

from which 

l c  r s i n  x aF 

ax,o= 2c r X 

(5-25) 

(5 -24) 

SYNTHESIS OF A SUBOPTIMAL CONTROL LAW 

To implement t h e  fuel-optimal, time-varying, feedback control  l a w  

would require such complex switching s t ra tegy a s  t o  be hardly feas ib le .  

Nevertheless, t h e  optimal study does indicate  how an e f f i c i en t  suboptimal 

cont ro l  l a w  may be designed. Fbrthermore, t h e  study provides a yard- 

s t i c k  by which t o  gauge t h e  effectiveness of any suboptimal proposal. 

The s implif ied suboptimal cont ro l  scheme eliminates a l l  switching 

l o c i  found between t h e  T-bang-coast isochrone and zero t ra jec tory .  The 

only switching curves i n  the  s t a t e  plane f o r  t h e  suboptimal proposal 

are t h e  f ixed  zero t r a j e c t o r i e s  and t h e  t i m e  dependent T-bang-coast 

isochrones. Thus suboptimal paths have a t  most two switchings and are 

e i t h e r  P-0-N (N-0-P) o r  P-0 ( N - 0 )  t r a j e c t o r i e s .  The two s t r a t eg ie s  

a re  iden t i ca l  except f o r  those states which a t  time-to-go T belong t o  

the  region below 
+ 

rJc bounded by t h e  T-bang-coast isocrhone and zero 
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t r a j ec to ry  I’+ ( see  Fig. 5-7).  For t h i s  region a s l i g h t  f u e l  penalty 

i s  paid i n  re turn f o r  a simplified switching strategy. I n i t i a l  d i s tu r -  

bances a re  a l so  zeroed s l i g h t l y  f a s t e r  than the  prescribed mission 

t i m e  T. 

Because t h e  suboptimal path i s  infac t  an optimal path f o r  a smaller 

prescribed time T I ,  t h e  difference between the  f u e l  consumptions of 

t he  two laws increases as the  prescribed t i m e  of  mission T > T ’  grows 

longer. For our selected cont ro l  bound of A = 3 ,  the  maximum penalty 

suffered by the  s implif ied control  law i s  3.6% which occurs a t  t h e  

maximum allowable time of mission T = ‘II. For most i n i t i a l  disturbances 

(including other  x2 values) t he  penalty i s  less than 1%. 

time of mission T = .75n, t he  m a x i m u m  f u e l  penalty f o r  any i n i t i a l  

disturbance i s  down t o  1% as  shown i n  Fig. 5-8. 

In f a c t  for 

The suboptimal cont ro l  scheme thus f a r  proposed requires implemen- 

t a t i o n  of t h e  T-bang-coast isochrones as t h e  time-dependent second 

switching locus. These switching curves a r e  approximated by 2n-1 

degree Hermit polynomials which match the  coordinates and slope of t h e  

isochrone a t  n points.  For T < - .77t the  T-bang-coast isochrones 

a r e  c lose ly  approximated by f i f t h  degree polynomials. (See Fig. 5-9.) 

But f o r  T > . 7 ~ ,  seventh degree polynomials a r e  needed for an accurate 

representation of  the  T-bang-coast isochrones. 

Figs.  5-9, and 5-10 the  slopes and coordinates which determine the  

matching Hermite polynomial a r e  indicated. The slope a t  (0,O) was 

not matched exactly but  instead w a s  adjusted t o  give b e t t e r  ove ra l l  

agreement between the  approximating polynomial and t h e  isochrone. The 

(See Fig. 5 -10. ) In 
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approximation i s  seen t o  be so accurate tha t  l i t t l e  addi t ional  f u e l  

penal t ies  would r e s u l t  from t h i s  refinement of t h e  previous suboptimal 

proposal provided polynomials were stored f o r  su f f i c i en t  values of T .  

The grea tes t  source of e r r o r  a r i s e s  i n  the  approximation of t h e  

continuous time-varying suboptimal feedback control  l a w  by a d iscre te  

time-varying feedback l a w .  If one samples the  s t a t e  (x,,x2) only 

a t  those t i m e s  f o r  which a polynomial switching curve i s  stored, many 

polynomials may be required t o  reduce the  f u e l  errors t o  an acceptable 

level .  The grea tes t  e r ro r  r e su l t s  when a s t a t e  (x,,x2) with x1 > 0 

and x2 < 0 l ies  j u s t  outside t h e  second switching locus a t  time T 

and thus continues with cont ro l  u = -A u n t i l  t he  next sampling t i m e  

a t  which it now i s  w e l l  within the  u = 0 cont ro l  region. In  t h i s  

event a double penalty i s  pa id  because upon reaching the  f i n a l  switching 

locus I' , fuel must now be used t o  reduce the  excessive veloci ty  x2 

which resulted f romthe  l a t e  switching a t  t he  T-bang-coast isochrone. 

+ 

For a sample time AT the  m a x i m u m  e r r o r  i s  nearly 2AnT where A i s  

t h e  cont ro l  bound. I n  t h e  most adverse circumstance f o r  A = 3 an 

addi t ional  1.88 uni t s  of f u e l  would be expended i f  ten  polynomials 

were s tored and the  s t a t e  only sampled a t  these ten  values of time. 

Depending upon t h e  state t o  be zeroed, anywhere from 2& t o  80% excess 

f u e l  would be consumed. This maximum error ,  while ra re ly  encountered 

f o r  any given disturbance, could be proportionally reduced by s tor ing 

more polynomials and accordingly reduce the  sample time AT o r  

preferably by increasing the  sample r a t e  without s tor ing addi t ional  

polynomials. 



To take grea te r  advantage of increased sampling r a t e s  f o r  a f ixed 

number of s tored polynomials, t h e  following scheme i s  proposed. Those 

sample points f o r  which times a polynomial switching curve i s  s tored  are 

ca l led  major sample points.  L e t  T1 and T2 denote t h e  two la rges t  

times-to-go f o r  which a polynomial i s  s tored such t h a t  

T2 < T1 < T (5 -25 1 

where T i s  the  t i m e  remaining f o r  zeroing t h e  state x ( t ) .  The i n t e r -  

v a l  T1-T2 i s  subdivided in to  n equal segments thereby crea t ing  n-1 

i n t e r i o r  minor sampling points f o r  which no switching polynomial i s  

stored. The sampling points a r e  ordered such t h a t  t h e  0-th occurs 

a t  t h e  f i r s t  major sampling t i m e  T1 and t h e  n-th a t  t h e  second major 

sampling point T2. The refined suboptimal control  scheme i s  then 

i l l u s t r a t e d  i n  Fig. 5-11 for n = 10. A t  time-to-go T s t a t e  (x,,x2) 

i s  assumed t o  be outside t h e  T switching polynomial. ( I f  it were 

inside t h i s  polynomial t h e  cont ro l  would be zero and no fu r the r  

switching would occur unt i l  reaching t h e  zero t ra jec tory .  ) 

t h e  integer  k ( 0  < - -  k < n)  

following cont ro l  s t  rat egy: 

1 

Letting 

denote t h e  sampling point w e  adopt t he  ’ 

i)  If s t a t e  x ( t )  has crossed t h e  T2-switching 

polynomial a t  sample point k, switch control  

t o  zero a t  sample k. 

Otherwise 

ii) If state x ( t )  has crossed the  T -switching 1 
n polynomial a t  sample point k where k 5 2 
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switch cont ro l  t o  zero a t  sample 2 k - l u n l e s s  

overridden by cont ro l  law (i) f o r  any k < - xi*  

In  cont ro l  l a w  (ii) the  time a t  which t h e  T -switching polynomial 1 
i s  crossed is  used t o  help determine t h e  time of next switching. The 

e f f e c t  of cont ro l  law (ii) i s  t o  approximate intermediate switching 

curves f o r  those times-to-go a t  which no switching polynomial i s  avai lable .  

For k > n the  process is  repeated with t h e  T2 polynomial now 

taking the  ro le  of t h e  T1 polynomial and a T ( T  < T2> polynomial 

replacing t h e  T2 polynomial. This refinement i n  the  suboptimal 

cont ro l  r ea l i za t ion  w i l l  reduce the  maximum e r r o r  by nearly a f a c t o r  

3 3  

of n. 

By merely increasing t h e  sample r a t e  a proportional reduction i n  

excess f u e l  expenditure has been achieved without increasing the  number 

of switching polynomials required 
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C ONC LUS I O N  

The problem of finding the  minimum ef for t  cont ro l  f o r  a pa r t i cu la r  

s a t e l l i t e  a t t i t u d e  motion, where t h e  p i t ch  motion may be described by 

the  nonlinear d i f f e r e n t i a l  equation 

i s  t h e  subject of t h i s  investigation. For react ion j e t  control lers ,  

t he  minimum e f f o r t  c r i t e r i o n  corresponds t o  minimum f u e l  expenditure. 

In  chapter I, a f t e r  formulation of t h e  problem t o  be studied, t h e  

Maximum Principle  of Pontryagin i s  used t o  obtain the  necessary condi- 

t i ons  on the  cont ro l  u ( t )  

f u e l  optimal. The t r a j e c t o r i e s  meeting such conditions a r e  termed 

pseudoextremals and are t h e  candidates f o r  t h e  optimal paths. The 

--- -x ~ __..__--- --. -- - - __^_ " --------_ I I.__ . 

i n  order that t h e  resu l t ing  t r a j ec to ry  be 
" .- -.--_-__-I___ ------- ._^- ,-- - -  

------- 

o p t i m a l  cont ro l  i s  found t o  be of type "bang-coast-bang'' i n  which the  

cont ro l  i s  e i t h e r  zero or a t  a l imi t ing  value - + A. 

In  chapter 11, Ithe backwards time formulation i s  presented and 
__ -- - -- 

- ----- 
possible cont ro l  sequences enumerated. By r e s t r i c t i n g  the  t i m e  T t o  

be always less than 31, t h e  minimum-time isochrone boundary of t he  
- 

_c_ .- ___ 

control lable  region i s  found t o  be generated by a s ingle  switch, bang- 

bang cont ro l  sequence. Such a r e s t r i c t i o n  seems appropriate f o r  it 

corresponds t o  requiring t h e  s a t e l l i t e  t o  be  reoriented within 

31/47 radians of o r b i t  or, f o r  a s a t e l l i t e  having i n e r t i a l  parameter 

K3 = -l./3, The consideration of an auxi l ia ry  

problem shows t h a t  optimal cont ro l  sequences of type f A, 0, T A,. . 
within half  an o r b i t .  



a r e  l imited i n  length t o  t h e  sequences f A, 0, T A  whenever t h e  

problem t i m e  T i s  less than x/2 + arcsinh 1 .78~t. An a l t e rna te  

proof r a i s ing  t h i s  lower bound . 7 8 ~  was not found. Nevertheless, 

t he  method o f  proof and a l l  computer examples ind ica te  t h a t  t h e  r e s u l t  

holds for times as large as Tt as  w e l l .  

In  chapter III,i t h e  backwards t i m e  ad jo in t  var iables  hl( ‘6) and 
-- - \---- -----__ 

X (z )  are found as functions of t h e  s t a t e  var iables  and i n i t i a l  condi- 

t i ons .  A theorem of J . C  . Dunn i s  used t o  r e l a t e  t he  pseudoextremals of 

t h e  Maximum Principle  t o  the  charac te r i s t ic  canonical equations of 

/-- - 
x --_ - 2 _-__ ---- 

L 

Only those pseudoext remals with vanishing Hamiltonian 
#-- 

H may a r r i v e  a t  t h e  or ig in  i n  t i m e  tf less than t h e  prescribed time 

T and s t i l l  be f u e l  optimal for t i m e  T .  By l imit ing t h e  T-controllable 

region t o  t h e  cylinder 

- 3 K  < x1 < - +3x - 

t he  complete t i m e  varying f u e l  optimal cont ro l  l a w  i s  derived. The 

cont ro l  law i s  time varying because t h e  t i m e  remaining for zeroing t h e  

s t a t e  vector  i s  an e s sen t i a l  parameter. The T-bang-coast isochrone and 

t h e  curve r f o m  t h e  second switching locus. 
+ 
Tt 

The r e s t r i c t i o n  

control  sequence of type 

th ree  switchings. The t h i r d  switching locus i s  derived by ordering 

the  corresponding P-0-P type pseudoextremals i n  a spec ia l  manner. 

-331 < - x1 - < + 3 ~  is imposed i n  order t o  l i m i t  a 

- +A,O,+A,O, .. . t o  a sequence of a t  most 

1- rd 
In  chapter IV t h i s  r e s t r i c t i o n  i s  removed and longer cont ro l  

sequences of type +A,O,+A,O,. . . a r e  allowed t o  occur. By exploi t ing 



t h e  s t ruc ture  of such pseudoextremals es tabl ished i n  chapter 111, t he  

fourth, f i f t h ,  and a dis joined t h i r d  switching l o c i  a r e  generated. 

Although t h e  resu l tan t  optimal cont ro l  l a w  i s  presented only f o r  the  

cont ro l  bound A = 3 ,  t he  same switching s t ruc ture  i s  present f o r  any 

bound A > 1. 

changed. The value A = 3 i s  selected a s  providing e f f i c i e n t  zeroing 

of an t ic ipa ted  disturbances without requiring unduly large control lers .  

The solut ion i s  then applied t o  t h e  ac tua l  ear th  pointing s a t e l l i t e  

problem i n  which t h e  p i tch  e r r o r  is driven t o  some multiple of 2kx while 

zeroing t h e  e r r o r  ra te .  

divide the  s t a t e  space in to  periodic segments within which a l l  s t a t e s  

Only the  shape and s i z e  of t h e  switching surfaces i s  

Time varying indifference curves then sub- 

a re  driven t o  t h e  same end point.  The chosen value A = 3 i s  suffi- 

c ien t  t o  guarantee t h a t  any p i tch  e r r o r  can be corrected within x 

radians of o r b i t  provided the p i tch  e r ro r  r a t e  i s  su f f i c i en t ly  small. 

In  chapter V I the l i n e a r  problem i s  compared t o  the  nonlinear and 

an indicat ion given of t h e  large region f o r  which the  l inear ized solu- 

t i o n  predicts  t h e  nonlinear system performance with good accuracy. 

&I e f f i c i e n t  suboptimal design i s  proposed and evaluated. 

" . -__-a - .I_ _--- 

- -  - - 
_ _  -___ ___-  ---- _. _ _  
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DERIVATION 

THE INERTIAL TORQUE 

APPENDIX A 

OF CONTROLIiED SATELLITE ATTITUDE MOTION 

For a r i g i d  s a t e l l i t e  B, t he  i n e r t i a l  torque about t h e  mass center  

B* i s  well known (See R e f .  [8] .) From Fig. 1-1, bl, b2, and T; form 

a right-handed set of orthogonal un i t  vectors which a r e  p a r a l l e l  t o  t h e  

3 

11, 12, and I of i n e r t i a  of  B f o r  B*. The 3 pr inc ipa l  axes 

i n e r t i a l t o r q u e  of the  s a t e l l i t e  B about B* i s  given by 

where mi, i=1,2,3 are the  measure numbers of the angular velocity 

of B i n  i n e r t i a l  reference frame R for t h e  bas i s  bi, i=1,2,3. 

The dot ( 0 )  

- 

denotes d i f f e ren t i a t ion  with respect t o  t i m e .  

For t h e  pa r t i cu la r  motion under consideration i n  which b remains 3 
normal t o  t h e  o r b i t a l  plane, t h e  angular veloci ty  w i s  given by 

w 3 0  

w 5 0  

1 

2 

where R i s  t h e  angular ve loc i ty  of reference frame A with respect t o  

i n e r t i a l  frame R and 8 i s  the  p i t ch  coordinate as defined i n  

Fig. 1-1. For t h e  given motion of a s a t e l l i t e  i n  c i r c u l a r  orb i t ,  s2 i s  



- 
a constant and t h e  i n e r t i a l  torque TI simplif ies  t o  t h e  expression 

THE GRAVITATIONAL TORQUE 

The gravi ta t iona l  torque i s  given by 

3GM - - 
T = - -  

G R3 'al 

(A-3)  

(A-4 )  

- 
( see  R e f .  181) where a i s  a uni t  vector along the  l i n e  of centers 

of t h e  ea r th  and s a t e l l i t e ,  I i s  t h e  second moment of B r e l a t ive  

t o  B++ f o r  Zl, i . e . ,  

1 - 
"1 

(A-5 1 

- 
and . 

"i j 
where (ai-'-d.) denotes the  innerproduct of t he  vectors 

The universal  g rav i ta t iona l  constant i s  G; t h e  mass of the  ear th  i s  
J 

M; and the  distance between the  mass centers of t h e  ear th  and s a t e l l i t e  

i s  R. For a c i r c u l a r  o rb i t  t h e  grav i ta t iona l  and cent r i fuga l  forces 

balance 

GM 2 - = R R  
R2 

and r e l a t ion  ( A - 4 )  may be rewrit ten 

(A-6  1 

- 
T = -3fi2g, X Ta 

1 G (A-7)  



But from Fig.  1-1 

- - - 
a1 = blcos 8 - b2sin 8 

Using (A-5) )  (A-7))  and (A-8)  w e  obtain t h e  expressions 

- 
T = i; - 12s ine  b2+ 0% 

G 1 3 
- 2 

= -3n ( I l s in  8 COS 8 % -I s i n  8 COS 8 b ) 

= -3n K I s i n  e COS e i; 3 3  3 

3 2  3 

2 

If t h e  control  torque i s  denoted by 

- 
3 Tc = Mb 

(A-8 1 

(A-9 1 

(A-10)  

(A-11)  

(A-12)  

- 
t h e  t o t a l  ac t ive  torque on the  s a t e l l i t e  TA i s  given by 

(A-13)  
2 e - -  

T~ = T ~ + T ~  = ( -3n K I s i n  e COS e + ~ ) b  3 3  3 

Since t h e  ve loc i ty  of t he  mass center of the s a t e l l i t e  i s  indepen- 

dent of 0 t he  generalized ac t ive  force Fe s a t i s f i e s  

(A-14)  

and the generalized i n e r t i a l  force F* s a t i s f i e s  

But 

FZ + Fe = 0 



or with the  a i d  of re la t ions  (A-13) ,  ( A - l h ) ,  and (A-15)  

2 .. 
I 8  + 3il K I s i n  8 cos 8 = M 3 3 3  

and %he equation ( 1 - 9 )  for t he  p i tch  motion is ve r i f i edn  

(A-17) 



APPENDIX B 

TIME OPTIMAL POLICY FOR THE REDUCED AUXILIARY 
PROBLEM OF THEOREM 2-3 

Consider the  system 

x4 = x3 
N 

G3 + 4 x 4  

N 

where the  control  u satisfies the  constraint  

The Hamiltonian i s  

N 

H = X3P4 - “4P3 - Po 

and corresponding adjoint  d i f f e r e n t i a l  equations are 

a H  
6 4 =  - - -  ax4 - 

$3 3 

- aH - - - -  ax - 3’4 

(B-4) 

Our objective is  t o  drive the  phase point (x4,x3) f r o m  the  i n i t i a l  

i n  minimum time. posit ion (1, f r e e )  t o  t h e  f ixed f i n a l  s t a t e  (-1,O) 

The Hamiltonian H i s  maximized by the  cont ro l  law 

-1 X4P3 > 0 

u =  +1 X4P3 < 0 
N 

Indeterminate x4p3 = 0 

03-71 



We begin by eliminating the poss ib i l i t y  of a s ingular  cont ro l  

generating a pseudoextremal. Should x p = 0 over a f i n i t e  time 

in t e rva l  (tl, t2) then e i t h e r  
4 3  

i) p3 o on (t  ,t ) 1 2  

ii) x4 o on ( t  t ) 1’ 2 

Taking f i rs t  case (i) 

= - o on (tl,t2) 3 p4 o on (t  t ) 
p3 I’ 2 (B-10) 

Because our adjoint  equations a re  l i nea r  and homogeneous, the  only 

continuous solut ion va l id  f o r  a l l  t and sa t i s fy ing  equation ( B - 1 0 )  

on (tl,t2) is the  t r i v i a l  solut ion p4 E p 0 V t .  Such a 

t r i v i a l  solut ion does not s a t i s f y  t h e  necessary conditions of Pontryagin’ s 

theorem (Ref. [ 2 ] ) .  

3 

Analogous reasoning for case (ii) yields  only the t r i v i a l  solution 

x4 x3 0 V t ,  a solut ion which f a i l s  t o  meet t h e  requirements of our 

mission.  Thus without loss of generali ty,  we may l i m i t  t he  control  t o  

t h e  values +1 and -1 seeking the t i m e  optimal solut ion.  

The boundary conditions f o r  t h i s  problem a r e  

(B-11)  

x ( t ) = O  3 f  x (0) f r e e  3 

and the  t ransversa l i ty  condition i s  



P 3 W  = 0 (B-12) 

and p3 
Switchings occur only a t  zeros of p (t) and x 4 ( t )  where 

x4 

3 
are governed by the  d i f f e r e n t i a l  equations 

N 

and u i s  e i t h e r  1 or -1. Let t ing p denote t h e  so lu t ion  t o  

(B-13)  for u i n i t i a l l y  = -1 and p 

i n i t i a l l y  = +1 

ment (B-12) va l id  i n  some neighborhood o f  

f i r s t  switching t are 

3,  -1 
N N 

denote t h e  solut ion f o r  u 3, +1 
t he  only solut ions t o  equation ( B - 1 3 )  meeting require- 

t = 0 up t o  t h e  t i m e  of  t h e  

S 

= C s i n  t t 4 O ?  ts 1 '3, +1 2 (B-16) 

where C1 and C2 are constants of in tegra t ion .  These solut ions 

remain pseudoextremals u n t i l  e i t h e r  

i) x4( t s )  = o ts > o 03-17) 

o r  

ii) p ( t  ) = o 3 s  

a t  which t i m e  a switching occurs. From 

both p,(t) and x ( t )  solut ions cons 4 

ts > 0 (B-18) 

( B - 1 3 )  and (B-14)  w e  see t h a t  

s t  of a l t e rna t ing  trignometric 

and hyperbolic a rc s .  We first  consider a l l  possible solut ions 
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N 

corresponding t o  u being i n i t i a l l y  +1 which could y i e ld  an optimal 

time of solut ion less than I[. A f t e r  completing t h i s  task,  we then 

consider those solut ions f o r  which u i s  i n i t i a l l y  -1. 
N 

Now p (t  > = 0  
3,+1 s 

again f o r  t he  f i rs t  t i m e  a t  

t = I [  
S 

Therefore assuming 

X 4 h s )  = 0 

i n  a time ts such t h a t  

ts < - I[ (B-21) 

The cont ro l  remains constant (+1) u n t i l  

X 4 ( t )  = 0 (B-22) 

a t  which time the  f i rs t  switching occurs. Up t o  the  f i r s t  switching ts 

a t  which time a switching occurs and the  solutions ~ 3 , + 1 l t )  and 

~ ~ , + ~ ( t )  are  extended by 

( t )  = Clsin t S cosh(t-ts)tClcos t s s i n h ( t - t s )  (B-24) '3, +1 

(t)  = D1sinh(t-ts) t c  [ ts, 5 1  (B-25 1 x4, +l 

denotes the  t i m e  of the second tr t o  t h e  i n t e r v a l  [ t s , t r ]  where 

switching, i .e . ,  the  smallest t r> ts such t h a t  e i t h e r  
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( t ) = O  '3,+1 r 
o r  

(B-26) 

(B-27) 

But from (B-25) ~ ~ , + ~ ( t )  never again vanishes. Should a second 

switching occur, it could only have been induced by a zero of p 

i n  which case 

(t) 3,+1 

s i n  t cosh( t  -t ) +cos t s i n h ( t  -t ) = 0 
S r s  S r s  

Since cosh( t r - t  ) and s i n h ( t  -t ) are both posi t ive,  equation 

(B-27) implies t h a t  
S r s  

ts >; 

But from equations (B-22) and (B-23) 

cos t + B s i n  ts = 0 
S 1 

Recalling a l s o  t h a t  ts < fi w e  f i n d  t h a t  

B1 > 0 

( B -28) 

(B-30)  

(B-31)  

and t h a t  x4 ( t )  behaves as shown i n  Fig. B-1 up t o  the  f i rs t  

switching. 

the  solut ion beginning a t  point B of Fig.  B - 1  would use less t i m e .  

conclude t h a t  no solut ion beginning with cont ro l  i n i t i a l l y  +1 and 

having two or more switchings can meet boundary conditions ( B - 1 1 )  and 

be t i m e  optimal, i f  the minimum t i m e  i s  t o  be less than rl. Inasmuch 

, +1 
But such a so lu t ion  can not  be t i m e  optimal because c l e a r l y  

We 
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as x 4 ( t )  must be zero f o r  some tE(0 , t  ) i n  order t o  sa 

there  must be a t  least one switching. 

f 

A path containing but  one 

switching i s  the  only candidate remaining f o r  which the  optimal time 

of so lu t ion  might be l e s s  than n .  Different ia t ing eqm.tion (B-25) we 

get 

which i s  never zero. 

x ( t  ) = 0 

cont ro l  i n i t i a l l y  +le Hence there  fs no optimal path having cont ro l  

i n i t i a l l y  +l, i f  the  m i n i m u m  time for solut ion i s  indeed l e s s  than x .  

We now return t o  those solutions beginning with control  i n i t i a l l y  

t n  ant ic ipat ion of f inding j u s t  such a solut ion.  

We can not meet the terminal boundary condition 

with a path having only one switching which begins with the  3 f  

-1 

Now from the  expression ( B - 1 5 )  for p ( t )  va l id  up t o  t h e  f i r s t  3, -1 
switching, w e  see  t h a t  the  f i r s t  switching can not be induced by a 

Up t o  t h e  f i r s t  switching r o  of P 3 , - 1  ( t ) .  

~ ~ , - ~ ( t )  = A2cosh t + B sinh 2 

Applying t h e  i n i t i a l  boundary condition of 

x ( t )  = cosh t f B2sinh t 4, -1 

(B-33)  t ter 0, ts I 

(B-11)  

t o ,  t s l  (B-34) 

To meet t h e  boundary conditions x 4 ( t )  must necessarily pass through 

zero a t  which t i m e  ts the  f i rs t  switching occurs. 

cosh t + B2sinh t = 0 (B-35 x 4 , - 4 t s )  = S S 



from which B2 may be evaluated 

cosh t 

s inh  t (B-36)  S 

S 

B = -  
2 

Extending t h e  so lu t ion  for x ( t )  beyond t h e  first switching we 

obtain t h e  expressions 

4, -1 

x 4, -1 ( t )  = D2sin(t-t  S ) t€ [ ts, t r l  (B-37) 

x 3, -1 ( t )  = 24,-1 ( t )  = D 2 C O s ( t - t s )  t € [ t s > t r ]  (B-38)  

v a l i d  up t o  the  time of second switching 

B ( - 3 4 )  and (€3-36) 
tr. But from expression 

cosh t 
~ ~ , - ~ ( t ~ )  = s inh  t + ( -  1) cosh t 

S s inh  t S 

1 
= -sinh(t) 

S 

(B-39) 

of equation (€3-38). There- D2 from which w e  may evaluate t h e  constant 

fo re  up t o  the  second switching, x ( t )  i s  given by 4, -1 

s i n ( t - t s )  
"4,-+) = - s inh  t t € [  ts, t r l  

S 

(B-40) 

and 

cos( t -ts) 
x ( t )  = 24,-Jt) = - sinh t€ [ ts, t r l  (B-41)  

S 
3 ,  -1 

Such a solut ion meets t h e  terminal boundary conditions ( B - 1 1 )  i n  time 

n / 2  + arc  s inh 1. 
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HOW 

wMeh firs% OCCUES for 

S 

(B-42) 

(B-433 

13-44) 

auy solu%i<sn x (t) having 3 ,  -1 

n@ switching must be optimal, and 

tm is infwt z/2 + arcs$& 1. 

thai  Sbs S @ Q . D P ~  switchiag occur i n  t i m e  tr < z, it must 

($1 A second switching induced by a 

(t) would occur a t  $%me tr = t +-n from expression 
S 

(B-$7).  The solut ign p3, , ( t )  a6 given by (B-15)  may be extended t o  

(t) = C ainh t scos( t - t s )  +C1cosh t s s in ( t - t s )  (B -47 ' 3 ~  -1 1 

A t  the seccmd ewitching then 



sinh t eos(t -t ) + eosh tssin(tr-ts) = 0 
S r s  

which can only occur for 

( B -48) 

t r -ts > 342 03-49] 

We now demonstrate that such a two switching solution can not meet the 

terminal boundary conditions (€3-11) within time fi. Extending the 

solutions for x (t) and x (t) as given by equations (B-37) 

and (B-38) on to the interval [ trJ tf I 
4, -1 3, -1 

we obtain 

In order that 

x (t) = D2sin(tr-t )eosh(t-tr) + 4,-1 S 

+ D cos(tr-ts)sinh(t-tr) 2 

x (t) = + D2sin(t -ts)sinh(t-tr) + 3, -1 r 

f D2eos( tr-ts)cosh(t-tr) 

x ( t ) = O  3,-1 f 

we must require rearranging (B-51) that 

(B-50) 

(B-51) 

cosh(t f r  -t )cos(tr-t S ) +  sinh(t f r  -t )sin(tr-ts) = 0 (B-53) 

The condition for the second switching (B-48) and equation (€3-53) can 

simultaneously hold only if the determinate of the coefficients of 

cos(tr-t ) and sin(t -t ) vanishes; namely, 
S r s  
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sinh t s i n h ( t  -t ) - cosh t cosh(t  -t ) = 0 (B-54) S f r  S f r  

o r  

which i s  impossible. Therefore a solut ion x ( t )  w i t h  two switchings 

within t i m e  I[ cannot s a t i s f y  t h e  boundary conditions (B-11) .  

3 ,  -1 

We now demonstrate t h a t  i n  order f o r  th ree  switchings t o  occur on 

an x (t)  solution, t he  t i m e  of t h e  t h i r d  switching t must be 

grea te r  than R .  I f  t h i s  be true, then the  solut ion given by (B-40) 

must be t h e  minimum t i m e  so lu t ion  because we f i n a l l y  have demonstrated 

t h a t  any o the r  solut ion sa t i s fy ing  the  maximum principle  and meeting 

our boundary conditions (B-11) requires more t i m e .  

3,  -1 (4 

We already have ssen tha t  t he  second switching must have been 

induced by a zero of p ( t )  i n  order t h a t  tr be less than fl. 

Therefore up t o  t h e  t h i r d  switching a t  t i m e  
3 ,  -1 

t we have 
q 

( t )  = E1sinh(t-tr) t e [ t r , t  1 03-56] p3, -1 (4 

an expression which is  never again zero. 

induced by a zero of x ( t ) .  

The t h i r d  switching must be 

4, -1 

x ( t ) = O  4 4  (4 
(B-57) 

But a t  t he  f i r s t  switching 

x ( t ) = O  4 4  s (B-58) 



t h e r e f o r e  for some tm such t h a t  

t < tm< t 
S q 

t h e  d e r i v a t i v e  of ~ ~ , - ~ ( t )  must vanish.  

(B-60) 

But requirement (B-60) is j u s t  equat ion ( B - 5 3 )  with 

tm 

tf replaced by 

. Reconstructing t h e  same argument as be fo re  w e  ob ta in  

cosh [ t  -t -ts] = 0 ( B -61) 
m r  

which is  impossible.  Hence t h r e e  switchings must r equ i r e  more time 

than  R .  

boundary condi t ions  (B-11) i n  t i m e  less than R i s  t h a t  x ( t )  

so lu t ion  having one switching. The minimum t i m e  f o r  t h e  problem niust 

be r(/2 + a r c s i n h  1. 

The only  s o l u t i o n  s a t i s f y i n g  t h e  m a x i m u m  p r i n c i p l e  and t h e  

4, -1 

F i g .  B - 1 .  S o l u t i o n  BC Requi res  L e s s  T i m e  Than S o l u t i o n  ABC.  



APPENDIX C 

SOLUTION FOR THE ADJOINT VARUWLEE 

k t o  in tegra te  t h e  adjoint  d i f f e r e n t i a l  equations along 

a s t a t e  t r a j ec to ry  i n  the backward time direct ion,  i i e . ,  in tegra te  

along the path 

Y; = -Y2 

y; = s i n  yl-u 

where u i s  +A, -A, o r  0.  W e  note tha t  

d2k2 dhz dx2 - - -  - 
d'G 

+ - [u-sin yEl 2 2 '2 dyl 
dY1 

+ x cos y1 = 0 - + [u-sin y I - dh; dh2 

y2 dy: 1 dY1 2 

If w e  consider only those t r a j e c t o r i e s  which do not cross the  y1 

axis (Y2 never zero) then 



+ h cos y1 = y2 7 + ~ [ u - s i n  y 1 - + [ s i n  y -u] - 
2 1 dY1 1 dY, 

dh; dh2 dh2 
2 

d Y l  

+ x s i n  yl-u h I = o d 2 dh2 - 
dy, "2 dy1. 2 2 

Hence, i n t eg ra t ing  w e  ge t  

= 
2 dh2 + h s i n  y1-uh2 y2 dy1_ 2 

(c-7) 

or 

thus 

In tegra t ing  

then 

x 2 = y 2 2 1  [. +c j Y 1  +] 
Y l S  Y2( 0 )  

( c  -10) 

(c-11) 

(c-12) 

and 



C 

x = X’ = - 2 + ( s i n  y l - u ~  [ c 2 +c JY1 +] 
y2 Y l s  Y 2 ( d  1 2  

From t he  i n i t i a l  condition 7 = T 
S 

n x ( T  ) = X2s = 1 
2 s  

w e  get  

1 c = - - -  X2s - 
y2s y2s 

and 

C 
his - - - - + ( s i n  yls-u)c2 

yes 

or 

c1 = y2s + ( s i n  y l s - ~ ) ~ 2 s  = %-luI 

Therefore (C -13 ) becomes 

o r  along an 0-arc having last  switching a t  (yls,y2s) 

(C -14 )  

(c  -18) 



APPENDIX D 

SOLUTION FOR THE ANOINT VARIABLES WHEN EITHER 
THE INITIAL OR FINAL POINT IS  ON THE y1 AXIS 

INITIAL POINT ON THE y1 AXIS 

We wish t o  in tegra te  the  d i f f e r e n t i a l  equation 

2 dh2 dx2 + h cos y1 = 0 
2 - + (u-s in  y ) - 

y2 1 dYl 

along a P,O, or N-arc s t a r t i n g  from t h e  s ingular  point M(ylm,O). 

Our previous expression f o r  t he  ad jo in t  var iables  as derived i n  

Appendix C; namely (c-18), is  inval id  f o r  t h i s  point M(ylm,O). The 

term - becomes i n f i n i t e  f o r  y2s 4 0  as does the  term 
y2 s 

because of t h e  integrand. Then repeating t h e  development /II: - 
of  Almuzara’s Appendix B Ref. [ 2 ] ,  w e  transform the  i n t e g r a l  i n  such a 

way t h a t  i t s  pr inciple  pa r t  cancels t he  corresponding pr inciple  par t  of 

. A s  we proceed t o  t h e  l i m i t  w e  obtain a f i n i t e  expression f o r  h2s’Y2s 

h2 - 
Near t h e  s ingular  point M(xlm,O) w e  have t h e  following series 

expans ions: 

(D-2) 
2 s i n  y = s i n  y + c o s  y ( y  -y ) +ol(yl-ylm) I 1 lm l m l l m  



where t h e  plus s ign  i s  t o  be used f o r  a r c s  above t h e  y axis and 

minus s ign  f o r  a r c s  below the  y axis. A t  t h i s  point w e  w i l l  need 
1 

t o  d i s t ingu i sh  between P-ares and N o r  0 a r e s  i n  order  t o  f a c t o r  

such expressions as i n  (D-4) i n  a meaningful way. 

1 

For a P-arc 

whereas f a r  an TJ or 0-arc 

i n  order  t h a t  w e  always dea l  with r e a l  numbers. 

i n t eg ra t ing  a long  an N o r  0-arc i n  which case t h e  plus s ign  i s  t o  be 

used 

Then assuming w e  a r e  
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A l s o  

Subst i tut ing (D-8) and (D-9) in to  (c-18), w e  get 

( D - 1 0 )  

or 



+ I$-M 1 + o [  (Yls-Y,) 1/21 + 

(D-11) 

But from (D-2) we have 

(D-12) 

= -h y -h cos yh(Yls-Y*) + o [  (Yls-Y,)21 Is 2s 2s 
(D-14) 

= -hls/2(u-sin yh)(y,-yh)~'* + o ~ ( y , , - Y ~ ) l  (D-15) 

Subst i tut ing (D-15) i n to  (D-11) we get  
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( D-16) 

If we now al low t h e  i n i t i a l  po in t  S t o  approach M w e  ob ta in  i n  

t h e  l i m i t  

1’ where now t h e  i n t e g r a l  i s  f i n i t e  f o r  any f i n i t e  y 

FINAL POINT ON THE y1 AXIS - 
Looking a t  our  expression f o r  h2(7) 

(D-18) 

of Y 1  + Y L m  w e  seek t h e  l i m i t  as 

Applying L’ Hospi ta l  r u l e  



s i n  y, -u 

-YCl 
L i m  

Y f  Y3.m 
L 

2 VY1 Yls ?"I Y2( 

From (D-19) and (D-21) 

The ref o r e  

BOW f o r  y2 f o 

( ~ ~ - 1 ~ 1 )  + h2(7 ) ( s in  yl-u) 

y2 
h p )  = - 

o r  using (D-18) 

(D-20)  

( D - 2 1 )  

( D - 2 2 )  

( D - 2 4 )  



Now we seek the  value of h (7) a t  the  s ingular  point M. Near 1 
>O) w e  have M ( Y l m  

If w e  again assume we a r e  on an N o r  0-arc so  a s  t o  f ac to r  square 

roots properly then 

- [2 ( s in  ylm-u)I ( D-28) 

Subst i tut ing (D-26) and (D-29) into (D-25) we get 



-F (sin y -u) 1 

Collecting and rearranging terms we o b t a i n  
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2 L i m  ( y  = ( s i n  y -u ) \  - h2s + 
y2s Im 2 1  Im 

Y l +  ylm 

+ 

+ 

where as before 

(D-32) 

the  in t eg ra l  i s  now f i n i t e .  If we now consider f i r s t  

a s  t he  end point of an arc and then use t h a t  m > O )  t h e  point M( yhl 

value of 

( a s  new h ) f o r  continuing t h e  integrat ion across the  y axis 

in to  the  upper half  of plane v i a  ( D - l T ) ,  we obtain 

given by (D-32) as  t h e  new i n i t i a l  condition on X , ( T )  xlm 

1s 1 
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The expression ( D - 3 4 )  i s  v a l i d  for )L2(T) f o r  y2 > 0. If t h e  

i n i t i a l  po in t  ~ ( y ~ ~ . ’ y ~ ~ )  is  a P-o corner,  i.e., 

= 1  x2s 

and w e  a r e  i n t e g r a t i n g  along an 0-arc  so t h a t  

u = o  

We ob ta in  (3-23) a f t e r  not ing t h a t  

y 2 (a) = y2 + 2 ( c o s  a-cos yls) 
2 2s 

along the  0-arc through t h e  point  S. 

(D-34) 

(D-35 ) 
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APPENDIX E 

COMPLETION OF PROOF OF LEMMA 3-4 

Herein w e  w i l l  denons t ra te  t h a t  given (yls,y2s and (YlrJY;2r )  

a s  f i r s t  and second switch poin ts  of a P-O-P... pseudoextremal, t h e  

term F( ylr) s a t i s f i e s  

from (3 -117) w e  have 

F(Ylr) = - 

where hls i s  t h a t  value 

- -  
xls 2 2Afy1r 
y2 s Y l s  

of t h e  a d j o i n t  

xl( 4 Y 2 (  4 

Y2( 4 
dm (E-2 ) 5 

X1 a t  t h e  f irst  switching 

) .  For a p a r t i c u l a r  ( ~ l r  J '2 r which proc$uces a second switching a t  

0-arc  h becomes a func t ion  of y a lone.  Along such an 0-arc 

y2 s l r  

ylr dependent 

IS l r  

and y,(U') do not  depend upon y b u t  X,(cr) i s  a c t u a l l y  

f o r  X1(m) i s  t h a t  value of t h e  a d j o i n t  hl a t  y1 = which 

produces a switching a t  y . Our no ta t ion  i n  (E-2) i s  thereby 

j u s t  i f  i e d  . 
lr  

We f i r s t  note  t h a t  for ylr = yls t h e  second switching point  R 

cc inc ides  with t h e  f i r s t  switching poin t  S.  This l i m i t i n g  case 
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h2 being tangent t o  the  l i n e  A. ( 7 )  E 1 2 corresponds t o  t h e  adjoint  

from above. A t  t h e  tangent point yls t h e  der ivat ive XlS vanishes. 

Hence 

(E-4)  

If now t h e  var ia t ion  6F due t o  a pos i t ive  var ia t ion  6ylr ( corres  - 

ponding t o  moving the  second switch point t o  the  r i g h t  an amount 

6ylr 

w i l l  be v e r i f i e d  once we note t h a t  every term of ( E - 2 )  i s  of continuous 

var ia t ion .  From ( E - 2 )  we have 

along t h e  f ixed  0-arc)  i s  always posit ive,  then r e l a t i o n  ( E - 1 )  

where 6Xl(C) i s  the  change i n  hl a t  yl = D necessary t o  move the  

point of second switching by 6y . With 6 h  (0) likewise defined we lr 2 

have 

or since 

t h e  r e l a t i o n  

X'(T) 1 = -cos y 1 2  h ( T )  

6x1 = -cos y 
1 2  1 

( E - 7  1 

( E - 8 )  

ho I s  exactly.  In  ke manner we have 

6h' = 6hl 
2 ( E - 9 )  
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6% = 6h s i n  y1 - 6hly2 2 ( E - 1 0 )  

'Y1r 
where 6F3 

i n  the  second switch point .  Noting t h a t  for 6ylr > o (v ia  an argu- 

ment similar t o  t h a t  i n  the  proof of theorem 3-3) 

i s  t h e  change i n  t h e  Hamiltonian producing a change 

6xls > - -  
2 
y2 s 

It w i l l  be s u f f i c i e n t  t o  show t h a t  

i n  order t o  guarantee t h a t  6F be posi t ive.  Using ( E - 1 0 )  t h i s  i s  

equivalent t o  

Now 

( E - 1 1 )  

( E - 1 2 )  

( E - 1 3  

where the last  equal i ty  i s  obtained by integrat ion by par t s .  

( E - l O ) ,  (E- lb) ,  and ( E - 1 5 )  then 

From 
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o r  

But from Appendix C we have along an 0-arc 

x + (%+&%)pL "1 
3 [ 2sY2s Y l s  Y2( 4 

6h2+h2 = y2 

from which 

= o  6h2s and s ince 

< 0 w e  must have "2, Since 

6% < 0 

( E-18) 

(E-20) 

( E - 2 1 )  

Subst i tut ing for &A2, i n to  (E-17)  we obtain 
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o r  

6~ ( o ) s i n  y,( m) 
d m  = 

2 
Y2( 5 4 

Y l s  

(E-22)  

(E-23)  

Because 

2 2 
Y2r L Y,(") (E-24)  

the  bracketed term of (E-23)  i s  pos i t ive .  

means 

This together  with (E-21)  

(E-25 

We have j u s t  shown one term of (E-13)  t o  be negative. It w i l l  

s u f f i c e  t o  show 

( E-26) 

as well .  From (3-83) we have 
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f Torn which 

or using (E-27) 

% =  (E-27) 

( E-28) 

(E-29) 

Since a t  t h e  switching R 

(E-30) l r  % = -Xlyy2, i- s i n  y 

(E-29) may be rewrit ten 

( E - 3 1 )  8% = 'lr y ; r p l r  + 
Y l s  Y 2 ( 4  

Our goal of ver i fying t h a t  (E-26) is infac t  negative i s  thereby reduced 

t o  showing 



> 0 f o r  an 0-P corner  w e  must v e r i f y  t h a t  'lr Sine e 

1 <  

The f a c t  t h a t  

2 2 
Y2r > Y 2 ( 4  

for y < a <  y completes t h e  p roof .  1s l r  

If w e  f i r s t  no te  t h a t  on t h e  i n t e r v a l  [n,2n], cos CT i s  

2 
2 monotonicly increas ing  then  y (IT) a l s o  increases  monotonicly on 

t h e  same i n t e r v a l  

2 > y2(a)  2 n < a <  y < 2n 
l r  - '2 r - 

s inc e 

2 y,,(U) = COS CJ + K 

0 1. yls < CT < ?r - Likewise for 

( E - 3 2 )  

(E-33)  

( E - 3 4 )  

(E-35  

( E - 3 6 )  
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But w e  must require t h a t  

(E-37) 

(E-38)  

i n  order t h a t  t h e  backward t i m e  Hamiltonian % be nonpositive. See 

r e l a t ion  (E-27). Therefore 

for a l l  u l e s s  than II as well and (E-34) i s  ver i f ied .  

(E-39) 
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